Total density of filled ball with nitrogen gas: 
The relationship between mass and volume can be easily determined using density; for example, the mass of a body is equal to its volume multiplied by the density (M = Vd), whereas the volume is equal to the mass divided by the density (V = M/d). The ball filled with nitrogen will not float in the air because total density of filled ball is greater than the density of an air. Density of the evacuated ball D = 0.214 g/L
Density of nitrogen gas = 
Mass of the nitrogen gas : 
Learn more about Mass and Density here:
brainly.com/question/10821730
#SPJ4
Answer:
the culotte, the fulminant capsule and the sheath or cap together with remains of powder
Explanation:
A bullet has a nose, sheath or casing, a short propellant charge, and a capsule.
All these components are part of the vouchers. The classification of these is in metallic and semi-metallic.
Answer:
[H₃O⁺] = [F⁻] = 2.2 x 10⁻² M. & [OH⁻] = 4.55 x 10⁻¹³.
Explanation:
- For a weak acid like HF, the dissociation of HF will be:
<em>HF + H₂O ⇄ H₃O⁺ + F⁻.</em>
[H₃O⁺] = [F⁻].
<em>∵ [H₃O⁺] = √Ka.C,</em>
Ka = 6.8 x 10⁻⁴, C = 0.710 M.
∴ [H₃O⁺] = √Ka.C = √(6.8 x 10⁻⁴)(0.710) = 2.197 x 10⁻² M ≅ 2.2 x 10⁻² M.
<em>∴ [H₃O⁺] = [F⁻] = 2.2 x 10⁻² M.</em>
<em></em>
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(2.2 x 10⁻²) = <em>4.55 x 10⁻¹³.</em>