Answer:
8 to 1.
Explanation:
- Oxygen combines with hydrogen atoms to form water according to the balanced equation:
<em>O₂ + 2H₂ → 2H₂O.</em>
It is clear that one mole of oxygen combines with two moles of hydrogen atoms to form 2 moles of water.
So, the molar ratio of oxygen to hydrogen is (1 to 2).
- The mass of 1 mole of oxygen = (no. of moles)(molar mass) = (1 mol)(32.0 g/mol) = 32.0 g.
- The mass of 2 moles of hydrogen = (no. of moles)(molar mass) = (2 mol)(2.0 g/mol) = 4.0 g.
<em>So, the mass ratio of oxygen to hydrogen (32.0 g/4.0 g) = (8: 1).</em>
<em></em>
Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

The moles of I₂ will form from the decomposition of 3.58g of NI₃ is 0.0136 moles.
<h3>How we calculate moles?</h3>
Moles of any substance will be calculated as:
n = W/M, where
W = required mass
M = molar mass
Given chemical reaction is:
2NI₃ → N₂ + 3I₂
Moles of 3.58g of NI₃ will be calculated as:
n = 3.58g / 394. 71 g/mol = 0.009 moles
From the stoichiometry of the solution, it is clear that:
2 moles of NI₃ = produce 3 moles of I₂
0.009 moles of NI₃ = produce 3/2×0.009=0.0136 moles of I₂
Hence, option (3) is correct i.e. 0.0136 moles.
To know more about moles, visit the below link:
brainly.com/question/15303663
I don't know what you are asking but AC= Alternative current
V= Volt
Answer:
the temperature of the star
Explanation:
The color of stars usually indicates the temperature of the star.
A star that is relatively cold usually shows a typical red color.
The hottest stars have a blue color.
- These star colors have been used by astronomers to determine their temperature.
- A broad spectrum between blue, the hottest color, and red the coldest is used.
- Class O stars are usually the blue colored ones
- Class M is the coldest with red color