Answer:
1) The bubbles will grow, and more may appear.
2)Can A will make a louder and stronger fizz than can B.
Explanation:
When you squeeze the sides of the bottle you increase the pressure pushing on the bubble, making it compress into a smaller space. This decrease in volume causes the bubble to increase in density. When the bubble increases in density, the bubble will grow and more bubbles will appear. Therefore, Changing the pressure (by squeezing the bottle) changes the volume of the bubbles. The number of bubbles doesn't change, just their size increases.
Carbonated drinks tend to lose their fizz at higher temperatures because the loss of carbon dioxide in liquids is increased as temperature is raised. This can be explained by the fact that when carbonated liquids are exposed to high temperatures, the solubility of gases in them is decreased. Hence the solubility of CO2 gas in can A at 32°C is less than the solubility of CO2 in can B at 8°C. Thus can A will tend to make a louder fizz more than can B.
Answer : The concentration of the NaOH solution is, 0.738 M
Explanation :
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Thus, the concentration of the NaOH solution is, 0.738 M
Aqueous solutions of barium nitrate and potassium phosphate are mixed.
What is the precipitate and how many molecules are formed?
Barium nitrate has a chemical symbol of Ba(NO3)2 and potassium phosphate
has a chemical symbol K2PO4. The reaction between these two is a double
replacement reaction yielding barium phosphate and potassium nitrate.
The chemical equation representing the reaction is,
Ba(NO3)2 + K2PO4 à KNO3 +
BaPO4
C, a compound because it means it was made up of more than one element but, still able to be separated from the other compound(s)