Answer:

Explanation:
Hello,
In this case, we find the following states:
a. Liquid salt water at 28.0 °C.
b. Liquid salt water at 102.5 °C.
c. Vapor salt water at 102.5 °C.
The first process (1) is to heat the liquid water from 28.0 °C to 102.5 °C and the second one (2) to vaporize the liquid salt water. In such a way, each process has an amount of energy that when added, yields the total energy for the process as shown below:

Best regards.
Answer:
The coefficient in a balanced chemical equation indicates the mole ratio of both reactants and products.
Explanation:
For example lets consider the reation between Hydrogen and Oxygen to form water:
2H2 + O2 ----------------------- 2H2O
In this reaction, the coefficients of the balanced reaction can be transformed to Mole ratio according to Avogadro's Law which states that at standard temperature and pressure, equal volume of gases contain the same number of moles.
So the mole ratio for the above equation is the ratio of the coefficient:
2moles : 1 mole : 2 moles
Answer:
In chemistry, pH (/piːˈeɪtʃ/) (abbr. power of hydrogen or potential for hydrogen) is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH.
Explanation:
that should answer ur question
Answer:
Most mercury forms in a sulfide ore called cinnabar, but mercury is also frequently found in small amounts in other ores. A common method for separating mercury from cinnabar is to crush the ore and then heat it in a furnace in order to vaporize the mercury. This vapor is then condensed into liquid mercury form.
Explanation:
Answer:
<h2>0.02 moles </h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
We have

We have the final answer as
<h3>0.02 moles</h3>
Hope this helps you