1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
13

What is the mass in kg of a leopard in a tree if the tree branch is 36 m up and the leopard's gravitational potential energy is

29988 J?
Physics
1 answer:
ElenaW [278]3 years ago
5 0

Answer:

83.3kg

Explanation:

GPE = m × g × h

GPE = mass of leopard × 10 × 36m

29988J = 360 × mass

mass = 83.3kg

You might be interested in
An electromagnetic wave of wavelength
Ivanshal [37]

Answer:

4.01\cdot 10^{-7} m

Explanation:

When an electromagnetic wave passes through the interface between two mediums, it undergoes refraction, which means that it bents and its speed and its wavelength change.

In particular, the wavelength of an electromagnetic wave in a certain medium is related to the index of refraction of the medium by:

\lambda=\frac{\lambda_0}{n}

where

\lambda_0 is the wavelength in a vacuum (air is a good approximation of vacuum)

n is the refractive index of the medium

In this problem:

\lambda_0 = 5.89\cdot 10^{-7} m is the original wavelength of the wave

n = 1.47 is the index of refraction of corn oil

Therefore, the wavelength of the electromagnetic wave in corn oil is:

\lambda=\frac{5.89\cdot 10^{-7}}{1.47}=4.01\cdot 10^{-7} m

8 0
2 years ago
A motorcycle is stopped at a stop light. When the light turns green it
ss7ja [257]

Answer: 18.9 m

Explanation:

i did the kinematic equation & found the answer.

8 0
2 years ago
the car turned a corner going 10m/s if it took two seconds to turn what is its acceleration is this acceleration​
exis [7]

The acceleration of this car is equal to 5 m/s^2.

<u>Given the following data:</u>

  • Initial velocity = 0 m/s (assuming it's starting from rest).
  • Final velocity = 10 m/s.
  • Time = 2 seconds.

To determine the acceleration of this car:

<h3>How to calculate acceleration.</h3>

In Science, the acceleration of an object is calculated by subtracting the initial velocity from its final velocity and dividing by the time.

Mathematically,  acceleration is given by this formula:

a = \frac{V\;-\;U}{t}

<u>Where:</u>  

  • V is the final velocity.
  • U is the initial velocity.
  • is the time measured in seconds.

Substituting the given parameters into the formula, we have;

a = \frac{10\;-\;0}{2}

Acceleration, a = 5 m/s^2

Read more on acceleration here: brainly.com/question/24728358

6 0
1 year ago
Does the tension of a string affect the speed of a wave
Nata [24]
Yes , increased tension suggests increased molecular attraction between the molecules of the ropes which affect the increase in the speed of wave.
5 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
2 years ago
Other questions:
  • Why is magnesium the limiting reactant in this experiment
    12·1 answer
  • Jason launches a model rocket with a mass of 2.0 kg from his spring-powered rocket launcher with a spring constant of 800 N/m. H
    8·1 answer
  • Which Richter magnitude range can be recorded by instruments but isn't felt? A. less than 2.9 B. 3.0 – 4.9 C. 5.0 – 5.9 D. 6.0 a
    14·2 answers
  • How does 10 organ systems contributes your arrival?
    12·1 answer
  • Assume that the total cholesterol levels for adults are normally distributed with mean cholesterol level of 51.6 ​mg/dL and stan
    13·1 answer
  • Fnet = 110 N
    14·1 answer
  • Which best illustrates the relationships between a producer and a consumer
    6·1 answer
  • How does a battery generate electrical energy
    11·1 answer
  • Sally and Susie are astronauts. They went outside the space station to fix something.
    6·1 answer
  • What is represent by number 14​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!