Answer: A.True
Explanation: simply put the magnitude of the speed is a function of Distance while the magnitude of velocity is a function of Displacement. Displacement is the average Distance moved in different directions which will be smaller in magnitude compared to the Total Distance used the calculating the magnitude of speed.
A )
t 1 = 2 h, t 2 = 6 h
Δ t = t 2 - t 1 = 6 - 2 = 4 h
54 = 50 + a Δ t
54 = 50 + 4 a
4 a = 54 - 4
4 a = 4
a = 4 : 4
a = 1 km/h²
v o = 48 km/h
An equation that can be used to describe the velocity of the car at the different times is:
v = 48 + t
B ) The graph is in the attachment.
Answer:
jame watt
Explanation:
James Watt tiña máis importancia que outro home
From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
-- find the horizontal and vertical components of F1.
-- find the horizontal and vertical components of F2.
-- find the horizontal and vertical components of F3.
-- add up the 3 horizontal components; their sum is the horizontal component of the resultant.
-- add up the 3 vertical components; their sum is the vertical component of the resultant.
-- the magnitude of the resultant is the square root of (vertical component^2 + horizontal component^2)
-- the direction of the resultant is the angle whose tangent is (vertical component/horizontal component), starting from the positive x-direction.