1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixas84 [53]
2 years ago
14

Bonds: Including Carbon Compounds Quick Check

Physics
1 answer:
Sever21 [200]2 years ago
5 0

Metallic bonds are responsible for many properties of metals, such as conductivity. This is because the bonds can shift because valence electrons are held loosely and move freely. That is option C.

<h3>What are metallic bonds?</h3>

Metallic bonds are defined as those bonds that causes the electrostatic attraction between metal cations and delocalized electrons of another metallic substance.

The characteristics of a metallic compound with metallic bonds include the following:

  • strength,

  • malleability,

  • ductility,

  • thermal and electrical conductivity,

  • opacity and

  • luster.

The metallic bonds of these metallic atoms gives them conductivity features because the electrons from the outer shells of the metal atoms are delocalised , and are free to move through the whole structure.

Learn more about metals here:

brainly.com/question/4701542

#SPJ1

You might be interested in
A geological process Select one: A. is limited to acting on rocks B. shapes and changes the earth C. starts in the outer atmosph
navik [9.2K]
It is B i believe thank and good bye

5 0
3 years ago
Which of the following is not an example of a chemical reaction? Rust, Photosynthesis, Melting Ice, Heat from Fire?
FinnZ [79.3K]
Rust, photosynthesis, and heat from fire are all chemical reactions <span>because </span>new substances are formed and the chemical formula is changed. By doing this, bonds are broken and formed in the making of the new substance. Melting ice is physical change the molecules are still water molecules, it just changed physical form. 
5 0
3 years ago
Read 2 more answers
The index of refraction of silicate flint glass for red light is 1.620 and for violet light is 1.660 . A beam of white light in
chubhunter [2.5K]

Answer:

The angular separation equals 0.35^{o}

Explanation:

We have according to Snell's law

n_{1}sin(\theta _{1})=n_{2}sin(\theta _{2})

\therefore \theta _{2}=sin^{-1}(\frac{n_{1}sin(\theta _{1})}{n_{2}})

Using this equation for both the colors separately we have

\theta _{red}=sin^{-1}(\frac{sin(23.90^{o})}{1.62})\\\\\theta _{red}=14.48^{o}

Similarly for violet light we have

\theta _{violet}=sin^{-1}(\frac{sin(23.90^{o})}{1.660})\\\\\theta _{violet}=14.13^{o}

Thus the angular separation becomes

\Delta \theta =14.48-14.13=0.35^{o}

6 0
3 years ago
What is Motion ????? ​
Mama L [17]

Answer:

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

5 0
3 years ago
Read 2 more answers
How did mount st. Helen get its name
steposvetlana [31]

The modern name, Mount St. Helen's, was given to the volcanic peak in 1792 by seafarer and explorer Captain George Vancouver of the British Royal Navy. He named it in honor of fellow countryman Alleyne Fitzherbert, who held the title 'Baron St. Helen's.

5 0
3 years ago
Other questions:
  • 6. A billiard ball traveling at 4.0 m/s has an elastic head-on collision with a billiard ball of equal mass
    9·1 answer
  • A 2-ft-diameter hemispherical plexiglass "bubble" is to be used as a special window on the side of an above-ground swimming pool
    5·1 answer
  • How did science of cartography came in India​
    10·1 answer
  • Which sound would be loudest?
    12·1 answer
  • Can anyone pls help me out in dis i am struggling in dis!
    6·1 answer
  • Power is work done over a what?
    7·1 answer
  • Please help me because it is due 12 am tonight will give brainlist
    14·1 answer
  • Objects fall near the surface of the earth with a constant downward acceleration of 10 m/s2 . At a certain instant an object is
    11·1 answer
  • Determine the density of an object that has a mass of 149.8 g and displaces 12.1 mL of water when placed in a graduated cylinder
    13·1 answer
  • What was the first and largest asteroid to be identified?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!