Answer:
The ball impact velocity i.e(velocity right before landing) is 6.359 m/s
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
----------------------(1)
---------(2)
----------------------- (3)
Where:
x = m is the horizontal distance travelled by the golf ball
is the golf ball's initial velocity
is the angle (it was a horizontal shot)
t is the time
y is the final height of the ball
is the initial height of the ball
g is the acceleration due gravity
V is the final velocity of the ball
Step 1: finding t
Let use the equation(2)


s
Substituting (6) in (1):
-------------------(4)
Step 2: Finding
:
From equation(4)


m/s (8)
Substituting
in (3):
v =42 .01 - 15.3566
V=26.359 m/s
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)
Answer:
no one ever amswers my questions
Answer:
velocity changes over time.
The given mass is 0.025563 g.
Examine the given choices.
a. 0.026 g
This uses 2 significant digits, with rounding to the 3rd decimal place.
b. 2.5 x 10² g = 250 g.
It is incorrect.
c. 0.025 g.
This uses 2 significant digits. It is inaccurate because it does not use rounding to the 3rd decimal place.
d. 0.02 g
This uses one significant digit. It is incorrect for representing the given data.
Answer: a. 0.026 g