1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
10

c) If the ice block (no penguins) is pressed down even with the surface and then released, it will bounce up and down, until fri

ction causes it to settle back to the equilibrium position. Ignoring friction, what maximum height will it reach above the surface
Physics
1 answer:
eduard3 years ago
7 0

Answer:

y = 20.99 V / A

there is no friction    y = 20.99 h

Explanation:

Let's solve this exercise in parts: first find the thrust on the block when it is submerged and then use the conservation of energy

when the block of ice is submerged it is subjected to two forces its weight  hydrostatic thrust

         

              F_net= ∑F = B-W

the expression stop pushing is

              B = ρ_water g V_ice

where rho_water is the density of pure water that we take as 1 10³ kg / m³ and V is the volume d of the submerged ice

We can write the weight of the body as a function of its density rho_hielo = 0.913 10³ kg / m³

             W = ρ-ice g V

              F_net = (ρ_water - ρ_ ice) g V

this is the net force directed upwards, we can find the potential energy with the expression

            F = -dU / dy

            ΔU = - ∫ F dy

            ΔU = - (ρ_water - ρ_ ice) g ∫ (A dy) dy

            ΔU = - (ρ_water - ρ_ ice) g A y² / 2

we evaluate between the limits y = 0,  U = 0, that is, the potential energy is zero at the surface

             U_ice = (ρ_water - ρ_ ice) g A y² / 2

now we can use the conservation of mechanical energy

starting point. Ice depth point

             Em₀ = U_ice = (ρ_water - ρ_ ice) g A y² / 2

final point. Highest point of the block

             Em_{f} = U = m g y

as there is no friction, energy is conserved

            Em₀ = Em_{f}

            (ρ_water - ρ_ ice) g A y² / 2 = mg y

let's write the weight of the block as a function of its density

            ρ_ice = m / V

            m = ρ_ice V

we substitute

             (ρ_water - ρ_ ice) g A y² / 2 = ρ_ice V g y

              y = ρ_ice / (ρ_water - ρ_ ice) 2 V / A

let's substitute the values

             y = 0.913 / (1 - 0.913) 2 V / A

             y = 20.99 V / A

This is the height that the lower part of the block rises in the air, we see that it depends on the relationship between volume and area, which gives great influence if there is friction, as in this case it is indicated that there is no friction

                V / A = h

where h is the height of the block

                 y = 20.99 h

You might be interested in
A ball of mass M collides with a stick with moment of inertia I = βml2 (relative to its center, which is its center of mass). Th
ZanzabumX [31]

Answer:

Part a)

v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}

Part b)

v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})

Explanation:

Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have

Mv_o = M v_1 + m v_2

here we also use angular momentum conservation

so we have

M v_o d = M v_1 d + \beta mL^2 \omega

also we know that the collision is elastic collision so we have

v_o = (v_2 + d\omega) - v_1

so we have

\omega = \frac{v_o + v_1 - v_2}{d}

also we know

M v_o d - M v_1 d = \beta mL^2(\frac{v_o + v_1 - v_2}{d})

also we know

v_1 = v_o - \frac{m}{M}v_2

so we have

M v_o d - M(v_o - \frac{m}{M}v_2)d = \beta mL^2(\frac{v_o + v_o - \frac{m}{M}v_2 - v_2}{d})

mv_2 d = \beta mL^2\frac{2v_o}{d} - \beta mL^2(1 + \frac{m}{M})\frac{v_2}{d}

now we have

(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})v_2 = \frac{2\beta mL^2v_o}{d}

v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}

Part b)

Now we know that speed of the ball after collision is given as

v_1 = v_o - \frac{m}{M}v_2

so it is given as

v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})

3 0
3 years ago
Pls answer quick I need to get the answer rn
lora16 [44]
I think it is False because as the Gad relajases fuel it doesn’t move as much anymore
3 0
2 years ago
Carol can be defined as a social drinker because she can easily limit drinking and she chiefly drinks alcohol when she is out wi
satela [25.4K]
True. These are the characteristics of a social drinker.
6 0
3 years ago
Read 2 more answers
True or false: Everything in the universe works with harmony because of balanced energy
Eduardwww [97]

Answer:

Explanation:

True

7 0
2 years ago
Read 2 more answers
Gravity on earth is 9.8 m/s squared, and gravity on the moon is 1.6 m/s squared. So if the mass of an object on earth is 40 kilo
garik1379 [7]

The mass of an object on Earth is the same as its mass on the Moon. The weight is different.

Weight = m * g

Weight ( Moon ) = 40 kg * 1.6 m/s² = 64 N

If the mass of an object on Earth is 40 kg, its mass on the Moon is 40 kg and its weight on the Moon is 64 N. 

7 0
3 years ago
Other questions:
  • What is instantaneous speed
    10·1 answer
  • 4. If you were an astronaut on the Moon, what would you experience? What would you see from your perspective?
    10·2 answers
  • Which statement best describes an isolated system?
    5·2 answers
  • Which theory suggests that the moon and the earth formed at the same time from dust and the solar nebula that formed the sun?
    7·1 answer
  • If this plastic cup is heated to its melting
    13·1 answer
  • What is the mass and density of 237 mL of water
    10·1 answer
  • Scientists can work in which of the following. Select all that apply.
    11·1 answer
  • How do you find out the missing masses in a balloon
    5·1 answer
  • The electric potential at the dot in the figure is 3160 V. What is charge q?
    9·1 answer
  • PLEASE HELP!! Lab: Electromagnetic Induction
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!