1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
10

c) If the ice block (no penguins) is pressed down even with the surface and then released, it will bounce up and down, until fri

ction causes it to settle back to the equilibrium position. Ignoring friction, what maximum height will it reach above the surface
Physics
1 answer:
eduard3 years ago
7 0

Answer:

y = 20.99 V / A

there is no friction    y = 20.99 h

Explanation:

Let's solve this exercise in parts: first find the thrust on the block when it is submerged and then use the conservation of energy

when the block of ice is submerged it is subjected to two forces its weight  hydrostatic thrust

         

              F_net= ∑F = B-W

the expression stop pushing is

              B = ρ_water g V_ice

where rho_water is the density of pure water that we take as 1 10³ kg / m³ and V is the volume d of the submerged ice

We can write the weight of the body as a function of its density rho_hielo = 0.913 10³ kg / m³

             W = ρ-ice g V

              F_net = (ρ_water - ρ_ ice) g V

this is the net force directed upwards, we can find the potential energy with the expression

            F = -dU / dy

            ΔU = - ∫ F dy

            ΔU = - (ρ_water - ρ_ ice) g ∫ (A dy) dy

            ΔU = - (ρ_water - ρ_ ice) g A y² / 2

we evaluate between the limits y = 0,  U = 0, that is, the potential energy is zero at the surface

             U_ice = (ρ_water - ρ_ ice) g A y² / 2

now we can use the conservation of mechanical energy

starting point. Ice depth point

             Em₀ = U_ice = (ρ_water - ρ_ ice) g A y² / 2

final point. Highest point of the block

             Em_{f} = U = m g y

as there is no friction, energy is conserved

            Em₀ = Em_{f}

            (ρ_water - ρ_ ice) g A y² / 2 = mg y

let's write the weight of the block as a function of its density

            ρ_ice = m / V

            m = ρ_ice V

we substitute

             (ρ_water - ρ_ ice) g A y² / 2 = ρ_ice V g y

              y = ρ_ice / (ρ_water - ρ_ ice) 2 V / A

let's substitute the values

             y = 0.913 / (1 - 0.913) 2 V / A

             y = 20.99 V / A

This is the height that the lower part of the block rises in the air, we see that it depends on the relationship between volume and area, which gives great influence if there is friction, as in this case it is indicated that there is no friction

                V / A = h

where h is the height of the block

                 y = 20.99 h

You might be interested in
Exactly one turn of a flexible rope with mass m is wrapped around a uniform cylinder with mass M and radius R.
Dennis_Churaev [7]

Answer:

\omega=\sqrt{\omega_0^2(\frac{M+m}{M})}

Explanation:

The rotational kinetic energy when the cylinder is with the rope is:

E_k=\frac{1}{2}I_c\omega_0^2+\frac{1}{2}I_r\omega_0^2

where we used the fact that both rope and cylinder hast the same w. This E_k must conserve, that is, E_k must equal E_k when the rope leaves the cylinder. Hence, the final w is given by:

E_{k1}=E_{k2}\\\\\frac{1}{2}I_c\omega_0^2+\frac{1}{2}I_r\omega_0^{2}=\frac{1}{2}I_c\omega^2\\\\\omega=\sqrt{\omega_0^2(\frac{I_c+I_r}{I_c})} (1)

For Ic and Ir we can assume that the rope is a ring of the same radius of the cylinder. Then, we have:

I_c=\frac{1}{2}MR^2\\\\I_r=mR^2

Finally, by replacing in (1):

\omega=\sqrt{\omega_0^2(\frac{M+m}{M})}

hope this helps!!

7 0
2 years ago
Why do you see colors when you look at reflected light from a cd
Nady [450]
The colors that you see on the CD are created by white light reflecting from ridges in the metal. When light reflects off or passes through something with many small ridges or scratches, you often get rainbow colors and interesting patterns. They are called interference patterns.
4 0
3 years ago
My mass is 65 kg and on Earth this equals a weight of 640 N, but on the moon where gravity is 1.7 m/s² my
Helen [10]

Your weight on the moon given the data from the question is 110.5 N

<h3>Definition of mass and weight </h3>

Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.

Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.

<h3>Relationship between mass and weight </h3>

Mass and weight are related according to the following equation

Weight (W) = mass (m) × Acceleration due to gravity (g)

<h3>How to determine the weight on the moon</h3>
  • Mass (m) = 65 Kg
  • Acceleration due to gravity on the moon (g) = 1.7 m/s²
  • Weight (W) =?

W = mg

W = 65 × 1.7

W = 110.5 N

Learn more about mass and weight:

brainly.com/question/14684564

#SPJ1

4 0
1 year ago
A ball of 12 kg is attached to a string of 0.8 meter spun at 4
lesantik [10]

Answer:

240 N

Explanation:

6 0
2 years ago
What is the net force on a car if the force of friction is 15 N and the forward force due to the engine is 20 N?
anygoal [31]
D. 35n forwards....................
8 0
3 years ago
Other questions:
  • AN airplane travels 4000 m in 20s on a heading 0f 35 degrees north west. Calculate average velocity .
    15·1 answer
  • 18. What do you call a change in state from a liquid to a gas?
    13·2 answers
  • A uniform charge density of 600 nC/m3 is distributed throughout a spherical volume (radius = 14 cm). Consider a cubical (3.2 cm
    14·1 answer
  • Does friction cause mechanical energy to change to thermal energy
    13·1 answer
  • In an experiment performed in a space station, a force of 60n causes an object to have an acceleration equal to 4m/s s .what is
    10·1 answer
  • Projectiles move in which two directions?
    13·2 answers
  • If
    8·1 answer
  • A car starting from rest accelerates in a straight line at a constant rate of 5.5m/s for 6s.If the car after this acceleration s
    11·1 answer
  • Why do scientists sometimes discuss the possibility of silicon as a basic element for life?
    9·1 answer
  • What is the mass of an object that requires 100N (kg-m/s2) of force in order to accelerate it at 10m/s2 (Please use G-R-E-S-A)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!