1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
10

c) If the ice block (no penguins) is pressed down even with the surface and then released, it will bounce up and down, until fri

ction causes it to settle back to the equilibrium position. Ignoring friction, what maximum height will it reach above the surface
Physics
1 answer:
eduard3 years ago
7 0

Answer:

y = 20.99 V / A

there is no friction    y = 20.99 h

Explanation:

Let's solve this exercise in parts: first find the thrust on the block when it is submerged and then use the conservation of energy

when the block of ice is submerged it is subjected to two forces its weight  hydrostatic thrust

         

              F_net= ∑F = B-W

the expression stop pushing is

              B = ρ_water g V_ice

where rho_water is the density of pure water that we take as 1 10³ kg / m³ and V is the volume d of the submerged ice

We can write the weight of the body as a function of its density rho_hielo = 0.913 10³ kg / m³

             W = ρ-ice g V

              F_net = (ρ_water - ρ_ ice) g V

this is the net force directed upwards, we can find the potential energy with the expression

            F = -dU / dy

            ΔU = - ∫ F dy

            ΔU = - (ρ_water - ρ_ ice) g ∫ (A dy) dy

            ΔU = - (ρ_water - ρ_ ice) g A y² / 2

we evaluate between the limits y = 0,  U = 0, that is, the potential energy is zero at the surface

             U_ice = (ρ_water - ρ_ ice) g A y² / 2

now we can use the conservation of mechanical energy

starting point. Ice depth point

             Em₀ = U_ice = (ρ_water - ρ_ ice) g A y² / 2

final point. Highest point of the block

             Em_{f} = U = m g y

as there is no friction, energy is conserved

            Em₀ = Em_{f}

            (ρ_water - ρ_ ice) g A y² / 2 = mg y

let's write the weight of the block as a function of its density

            ρ_ice = m / V

            m = ρ_ice V

we substitute

             (ρ_water - ρ_ ice) g A y² / 2 = ρ_ice V g y

              y = ρ_ice / (ρ_water - ρ_ ice) 2 V / A

let's substitute the values

             y = 0.913 / (1 - 0.913) 2 V / A

             y = 20.99 V / A

This is the height that the lower part of the block rises in the air, we see that it depends on the relationship between volume and area, which gives great influence if there is friction, as in this case it is indicated that there is no friction

                V / A = h

where h is the height of the block

                 y = 20.99 h

You might be interested in
A glass of root beer with a scoop of ice cream floating on top and a straw sticking out.
vampirchik [111]

Answer:

These forces are all equal and cancel each other out. Gravity pushes downward on the ice cream. This can also be called the weight of the ice cream. Buoyant force pushes the ice cream upward

6 0
2 years ago
a ball is projected upward at time t = 0.00 s from a point on a roof 70 m above the ground. The ball rises, then falls and strik
grin007 [14]

Answer: 17.68 s

Explanation:

This problem is a good example of Vertical motion, where the main equation for this situation is:  

y=y_{o}+V_{o}t-\frac{1}{2}gt^{2} (1)  

Where:  

y=0 is the height of the ball when it hits the ground  

y_{o}=70 m is the initial height of the ball

V_{o}=82m/s is the initial velocity of the ball  

t is the time when the ball strikes the ground

g=9.8m/s^{2} is the acceleration due to gravity  

Having this clear, let's find t from (1):  

0=70m+(82m/s)t-\frac{1}{2}(9.8m/s^{2})t^{2} (2)  

Rewritting (2):

-\frac{1}{2}(9.8m/s^{2})t^{2}+(82m/s)t+70m=0 (3)  

This is a quadratic equation (also called equation of the second degree) of the form at^{2}+bt+c=0, which can be solved with the following formula:

t=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}  (4)

Where:

a=-\frac{1}{2}(9.8m/s^{2}

b=82m/s

c=70m

Substituting the known values:

t=\frac{-82 \pm \sqrt{82^{2}-4(-\frac{1}{2}(9.8)(70)}}{2a}  (5)

Solving (5) we find the positive result is:

t=17.68 s

7 0
3 years ago
Describe a change caused by kinetic energy as well as a change that involves potential energy
kykrilka [37]
Kinetic energy is formed when the object is in motion.
Potential energy is the energy that is formed relative to others.

One of the example is Corn flour factory.

Corn turned into flour by a windmill that moved by the waterfall. Movement of the mill is relative to the power given by waterfall (potential energy) and the spinning crushes the corn into flour (kinetic energy)
5 0
3 years ago
Read 2 more answers
Cells with similar preferences are arranged closer together in the auditory cortex.
Misha Larkins [42]
<span>Cells with similar preferences are arranged closer together in the auditory cortex. </span>That statement presented is True. Auditory cortex is in the temporal lobe. It processes auditory information in human and as well as other invertebrates. The neurons inside the auditory cortex are organized depends on the frequency of the sound.
4 0
3 years ago
Read 2 more answers
A proton moving at 3.90 106 m/s through a magnetic field of magnitude 1.80 T experiences a magnetic force of magnitude 7.20 10-1
VARVARA [1.3K]

Answer:

\theta=40^0

Explanation:

The magnitude of the magnetic force is

F_m=evB\sin\theta

To find the angle, we make \sin\theta subject of the formula

\implies \sin\theta=\frac{F_m}{evB}=\frac{7.20\times 10^{-13}}{1.6\times 10^{-19}\times 3.90\times 10^6\times 1.80}

\implies \sin\theta=0.641025641

\therefore \theta=\sin^{-1}=39.8683^0\\\implies \theta\approxeq 40^0

8 0
3 years ago
Other questions:
  • Which of the following would make a good semiconductor? aluminum germanium gold concrete
    14·2 answers
  • In this diagram,the distance known as the amplitude is shown by choice
    6·2 answers
  • A chamber 5.0 cm long with flat, parallel windows at the ends is placed in one arm of a Michelson interferometer (see below). Th
    5·1 answer
  • Which combination of characteristics produces the LEAST energetic waves?
    9·1 answer
  • Amber moves from her desk to the door in 17 seconds. Her speed changes from rest to 5 m/s. What is Amber's average acceleration?
    10·1 answer
  • ¿Qué es una vibración?
    11·1 answer
  • What is the difference in
    7·2 answers
  • What do you mean by reflection of sound​
    15·1 answer
  • Which atmospheric gas is used by plants and given off by animals? A. Carbon dioxide. B. Nitrogen C. Oxygen D. Argon​
    12·2 answers
  • PLEASE ANSWER NEED HELP!!!!!!!! PLEASE THE CORRECT ANSWER!!!!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!