Answer:
F = - K X force constant for spring
a = F / m maximum acceleration
F = 4.5 kg * 26 m/s^2 = 117 Newtons
(A) K = 117 N / .038 m = 3079 N/m
ω = (K/M)^1/2 = (117/5)^1/2 = 4.84 / sec
(B) f = ω / 2 pi = 4.84 / 6.28 = .77 /sec
(C) P = 1 / f = 1/.77 = 1.30 sec
Answer: The Normal Force
Explanation:
According to Third Newton's Law, also konwn as The principle of action and reaction :
<em>"If a body A exerts an action on another body B, it performs on A another action that is the same and in the opposite direction."</em>
In this case this is what happens with the book on a table, gravity force pulls it downward, but the Normal Force (perpendicular to the surface of the table) acts in the opposite direction with the same magnitude, preventing the book from accelerating downward.
The momentum of an object is equivalent to the product of the object's mass and velocity. Computing the momentum for each ball:
A- 15 * 0.7 = 10.5
B- 5.5 * 1.2 = 6.6
C- 5.0 * 2.5 = 12.5
D- 1.5 * 5.0 = 7.5
Therefore, ball C has the greatest momentum.
Answer:
<em> The planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S.I Unit of acceleration is m/s². Acceleration is a vector quantity because it can be represented both in magnitude and in direction.
Acceleration can be represented mathematically as
a = v/t.................................... Equation 1
Where a = acceleration, v = velocity, t= time.
<em>Given: v = 115 m/s, t = 13.0 s</em>
<em>Substituting these values into equation 1</em>
<em>a = 115/13</em>
<em>a = 8.846 m/s² moving east</em>
<em>Thus the planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>