pigsExplanation: population
The balloon steals electrons from your hair, leaving the hair positively charged, and the balloon negatively charged. It causes the hair to be apart from each other, because they have the same charge. Glass has a weaker hold on electrons, and silk absorbs the lost electrons.
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
<h2>Answer:</h2>
<u>Distance covered is 6.9 meters</u>
<h2>Explanation:</h2>
Data given:
Work Done = 345 kJ = 345000 J
Force = 5 x 10 ^ 4 = 50000 N
Distance = ?
Solution:
As we know that
Work Done = Force applied x Distance covered
By arranging the equation we get
Work / Force = Distance covered
By putting the values
345000 / 50000 = 6.9
So distance covered is 6.9 meters
Explanation:
A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression :

Where


m = 7 kg
So, the correct step for obtaining a common denominator for the two fractions in the expression in solving for a is (a) and the value of a is :


Hence, the correct option is (a).