To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
Explanation:
It is given that,
Mass of the soccer ball, m = 0.425 kg
Speed of the ball, u = 15 m/s
Angle with horizontal, 
Time for which the player's foot is in contact with it, 
Part A,
The x component of the soccer ball's change in momentum is given by :



The y component of the soccer ball's change in momentum is given by :



Hence, this is the required solution.
Answer:
Its color
Explanation: I got it right
Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum





Answer:
1.3 x 10⁻⁴ m
Explanation:
= wavelength of the light = 450 nm = 450 x 10⁻⁹ m
n = order of the bright fringe = 1
θ = angle = 0.2°
d = separation between the slits
For bright fringe, Using the equation
d Sinθ = n
Inserting the values
d Sin0.2° = (1) (450 x 10⁻⁹)
d (0.003491) = (450 x 10⁻⁹)
d = 1.3 x 10⁻⁴ m