Answer:The distribution of electrons in an atom is called as Electronic Configuration. Formula 2n2 helps in the determination of the maximum number of electrons present in an orbit, here n= orbit number.
Explanation:
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
The answer is number 2. That releases massive amounts of radiation and by the way, that is how atomic bombs are made to detonate.
Decreasing temperature and increasing pressure
Answer:
<u><em></em></u>
- <u><em>C) How much energy was added to the substance to increase molecule motion? </em></u>
Explanation:
<em>The most relevant question to ask regarding this change</em> must take into account the physical knowledge about matter.
When matter changes from<em> liquid </em>state to <em>gaseous</em> state, a physical change called evaporation, the particles (molecules or atoms) of the <em>pure substance </em>will separate from each other, take up more space and move faster.
<em>Condensation</em> is the opposite to evaporation, thus the option A) is not the most relevant question.
<em>The charge of the particles</em> does not change; so the option B) is not relevant at all.
The particles should gain energy from the surroundings to <em>increase</em> their <em>motion</em> (kinetic energy) when they pass from liquid state, where they move slower, to gas state, where they move faster. Hence, the option<em> C), How much energy was added to the substance to increase molecule motion?</em> , is totally relevant.
Since this is an increase in the <em>kinetic energy of the molecules</em>, the option D) is not relevant.