Sorry but NaCl is a ionic compound not an element though it's made up of two elements sodium and chlorine
The molar mass of gas = 206.36 g/mol
<h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K
T = temperature, Kelvin
mass (m)= 2.89 g
volume(V) = 346 ml = 0.346 L
T = 28.3 C + 273 = 301.3 K
P = 760 mmHg=1 atm
The molar mass (M) :

Answer:
there'd be 2 electrons
Explanation:
number of electrons= number of protons
The reaction as shown is known to be an exothermic reaction.
<h2>Endothermic and exothermic reaction:</h2>
Depending on the temperature of the reaction vessel after reaction, the reaction could be classified as;
In an endothermic reaction, heat is absorbed and the rate of reaction increasing with increase in temperature while in an exothermic reaction, the rate of reaction decreases with increase in temperature.
Hence, the correct statements are;
- The reaction is an exothermic reaction.
- The value of K decreases as the value of T increases.
Learn more about exothermic reaction: brainly.com/question/14969584
Answer: a) 
b) 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
a) Mass of Ba= 66.06 g
Mass of Cl = 34.0 g
Step 1 : convert given masses into moles.
Moles of Ba =
Moles of Cl = \frac{\text{ given mass of Cl}}{\text{ molar mass of Cl}}= \frac{34g}{35.5g/mole}=0.96moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Ba =
For O =
The ratio of Ba: Cl= 1:2
Hence the empirical formula is 
b) Mass of Bi= 80.38 g
Mass of O= 18.46 g
Mass of H = 1.16 g
Step 1 : convert given masses into moles.
Moles of Bi =
Moles of O=
Moles of H=
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Bi=
For O =
For H=
The ratio of Bi: O: H= 1:3: 3
Hence the empirical formula is 