Heat required to vaporize 1 mol of water from water at 100C to steam at 100C = 40.7 kJ
<span>1 mol of water weighs = 18.015g
</span>1.55 kg = <span>1550/18.015 mol = 86.03 mol
</span><span>Heat required to vaporize :
</span>= 86.03 mol x <span>40.7 kJ
</span>
= 3501.421 kJ
Co2 will dissolve in water if water is saturated with Co2 first then it will absorb some of CO2 it appear as less is absorb that was actually the case . this would make it appear as present of CACO3 is in original sample is lower than it will be too low
/~\ The correct answer is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<em><u>Hydrogen is a chemical and is </u></em><em><u>found in the sun and most of the stars, </u></em><em><u>and the</u></em><em><u> planet Jupiter</u></em><em><u> is composed mostly of hydrogen. On Earth,</u></em><em><u> </u></em><em><u>hydrogen is found in the</u></em><em><u> greatest quantities as water.</u></em>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I hope this helps! /~\
A baseline for experimental investigation is provided by an hypothesis. This is a must before conducting experiments. Also, it is the hypothesis that is being proved by doing the experiments. So, hypothesis is very important in research studies. Hope this answers the question.
Answer:
Weigh the empty crucible, and then weigh into it between 2 g and 3 g of hydrated copper(II) sulphate. Record all weighings accurate to the nearest 0.01 g.
Support the crucible securely in the pipe-clay triangle on the tripod over the Bunsen burner.
Heat the crucible and contents, gently at first, over a medium Bunsen flame, so that the water of crystallisation is driven off steadily. The blue colour of the hydrated compound should gradually fade to the greyish-white of anhydrous copper(II) sulfate. Avoid over-heating, which may cause further decomposition, and stop heating immediately if the colour starts to blacken. If over-heated, toxic or corrosive fumes may be evolved. A total heating time of about 10 minutes should be enough.
Allow the crucible and contents to cool. The tongs may be used to move the hot crucible from the hot pipe-clay triangle onto the heat resistant mat where it should cool more rapidly.
Re-weigh the crucible and contents once cold.
Calculation:
Calculate the molar masses of H2O and CuSO4 (Relative atomic masses: H=1, O=16, S=32, Cu=64)
Calculate the mass of water driven off, and the mass of anhydrous copper(II) sulfate formed in your experiment
Calculate the number of moles of anhydrous copper(II) sulfate formed
Calculate the number of moles of water driven off
Calculate how many moles of water would have been driven off if 1 mole of anhydrous copper(II) sulfate had been formed
Write down the formula for hydrated copper(II) sulfate.
#*#*SHOW FULLSCREEN*#*#
Explanation: