Answer:
D. All of the Above
Explanation:
i just took the test on edgenuity
Answer:
Explanation:
For transitions:
So,
and
(As the hydrogen has to ionize)
Thus,
pH=2.7
<h3>Further explanation</h3>
Acetic acid = weak acid
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Ka = acid ionization constant
M = molarity
Ka for Acetic acid(CH₃COOH) : 1.8 x 10⁻⁵
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.222}\\\\=0.001998=1.998\times 10^{-3}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.222%7D%5C%5C%5C%5C%3D0.001998%3D1.998%5Ctimes%2010%5E%7B-3%7D)

Answer:
I) the heat capacity of ammonia(s)
II) the heat capacity of ammonia(ℓ)
IV) the enthalpy of fusion of ammonia
Explanation:
Initially, ammonia at 200 K is liquid. To calculate the change of enthalpy from 200 K to 195 K (melting point) we need to know the heat capacity of ammonia(ℓ).
At 195, ammonia is in the transition from liquid to solid (solidification). To calculate the change of enthalpy in that process we need to know the enthalpy of solidification of ammonia, which has the same value but opposite sign to the enthalpy of fusion of ammonia.
From 195 K to 0 K, ammonia is solid. To calculate the change of enthalpy in that process we need to know the heat capacity of ammonia(s).