Answer:
972 J
Explanation:
At the bottom, all the gravitational potential energy was converted into kinetic energy. If you calculate the GPE, its value will be the same that the KE at the bottom. The GPE can be calculated this way:
GPE = mass×gravity×heigth
GPE = 2.2×9.8×45.08 ≈ 972
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium is reached, i.e. until their temperatures are equal. We say that heat flows from the hotter to the cooler object. Heat is energy on the move.
Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.



_________________________________
If west means the west of the axis x the velocity equal :

Answer:
a) L = 3.29 10⁻⁴ H, b)U = 5.33 10⁻² J
Explanation:
a) The inductance is a solenoid this given carrier
L =
The magnetic field inside the solenoid is
B = μ₀
hence the magnetic flux
Ф_B = B. A = μ₀
we substitute in the expression of inductance
L = N² μ₀ A /l
let's find the area of each turn
A = π r²
A = π 0.02²
A = 1.2566 10⁻³ m²
let's calculate
L = 250² 4π 10⁻⁷ 1.2566 10⁻² / 0.3
L = 3.29 10⁻⁴ H
b) The stored energy is
U = ½ L i²
let's calculate
U = ½ 3.29 10⁻⁴ 18²
U = 5.33 10⁻² J
Answer:

Explanation:
Given that:
p = magnitude of charge on a proton = 
k = Boltzmann constant = 
r = distance between the two carbon nuclei = 1.00 nm = 
Since a carbon nucleus contains 6 protons.
So, charge on a carbon nucleus is 
We know that the electric potential energy between two charges q and Q separated by a distance r is given by:

So, the potential energy between the two nuclei of carbon is as below:

Hence, the energy stored between two nuclei of carbon is
.