Answer:

Explanation:
The electric flux through a certain surface is given by (for a uniform field):

where:
E is the magnitude of the electric field
A is the area of the surface
is the angle between the direction of the field and of the normal to the surface
In this problem, we have:
is the electric field
L = 2.0 m is the side of the sheet, so the area is

, since the electric field is perpendicular to the surface
Therefore, the electric flux is

If it does do it then yeah it will for it
Answer:
the answer is most likely likely to be 2
Answer:
+7.0 m/s
Explanation:
Let's take rightward as positive direction.
So in this problem we have:
a = -2.5 m/s^2 acceleration due to the wind (negative because it is leftward)
t = 4 s time interval
v = -3.0 m/s is the final velocity (negative because it is leftward)
We can use the following equation:
v = u + at
Where u is the initial velocity
We want to find u, so if we rearrange the equation we find:

and the positive sign means the initial direction was rightward.
Answer:
The speed of the sound wave on the string is 545.78 m/s.
Explanation:
Given;
mass per unit length of the string, μ = 4.7 x 10⁻³ kg/m
tension of the string, T = 1400 N
The speed of the sound wave on the string is given by;

where;
v is the speed of the sound wave on the string
Substitute the given values and solve for speed,v,

Therefore, the speed of the sound wave on the string is 545.78 m/s.