Explanation and Examples
let the mass of the compressor be
mass (m):
height in x axis is (h1)
height in y axis be (h2):
Height difference: h2-h1
displacement x force:
mass x gravity x height
(m)*9.8*(height difference) = ___ J
Since gravity is forcing down, it would be negative!
Put the values that you require and get the answer.
Explanation:
We have,
Mass of an object is 0.5 kg
Force constant of the spring is 157 N/m
The object is released from rest when the spring is compressed 0.19 m.
(A) The force acting on the object is given by :
F = kx

(B) The force is simply given by :
F = ma
a is acceleration at that instant

Answer:
what did u say and what language are you speaking in
Answer:
Explanation:
Let the velocity of deuteron be v then force on it in magnetic field
Bqv , B is magnetic field and q is charge on deuteron . This force will provide centripetal force for circular path so
mv² / r = Bqv m is mass of deuteron and r is radius of circular path
v = Bqr / m
(.5 x 1.6 x 10⁻¹⁹ x 55.6 x 10⁻² )/ 3.34 x 10⁻²⁷
= 13.31 x 10⁶ m /s
Answer:
-589.05 J
Explanation:
Using work-kinetic energy theorem, the work done by friction = kinetic energy change of the base runner
So, W = ΔK
W = 1/2m(v₁² - v₀²) where m = mass of base runner = 72.9 kg, v₀ = initial speed of base runner = 4.02 m/s and v₁ = final speed of base runner = 0 m/s(since he stops as he reaches home base)
So, substituting the values of the variables into the equation, we have
W = 1/2m(v₁² - v₀²)
W = 1/2 × 72.9 kg((0 m/s)² - (4.02 m/s)²)
W = 1/2 × 72.9 kg(0 m²/s² - 16.1604 m²/s²)
W = 1/2 × 72.9 kg(-16.1604 m²/s²)
W = 1/2 × (-1178.09316 kgm²/s²)
W = -589.04658 kgm²/s²
W = -589.047 J
W ≅ -589.05 J