To solve this problem, we need to use the midpoint formula, where M = (x1+x2/2, y1+y2/2). To solve, we must plug in the given (x,y) values from our ordered pairs and then simplify, shown below:
(x1+x2/2, y1+y2/2)
( (16 + -6)/2, (5 + -9)/2 )
Now, we can begin to simplify by computing the addition in the numerators of both fractions.
(10/2, -4/2)
Next, we can finish the simplification process by dividing these fractions.
(5, -2)
Therefore, the midpoint of (16,5) and (-6,-9) is (5,-2).
Hope this helps!
Answer:

Step-by-step explanation:
To calculate the angles of the given triangle, we can use the law of cosines:

Then, given the sides a=2, b=9, and c=8.

For B:

Simplify each term<span>.</span>
Simplify <span>3log(x)</span><span> by moving </span>3<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+2log(y−1)−5log(x)</span><span>
</span>
Simplify <span>2log(y−1)</span><span> by moving </span>2<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+log((y−1<span>)^2</span>)−5log(x)</span><span>
</span>
Rewrite <span>(y−1<span>)^2</span></span><span> as </span><span><span>(y−1)(y−1)</span>.</span><span>
</span><span>log(<span>x^3</span>)+log((y−1)(y−1))−5log(x)</span><span>
</span>
Expand <span>(y−1)(y−1)</span><span> using the </span>FOIL<span> Method.
</span><span>log(<span>x^3</span>)+log(y(y)+y(−1)−1(y)−1(−1))−5log(x)</span><span>
</span>
Simplify each term<span>.
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>x^<span>−5</span></span>)</span><span>
</span>Remove the negative exponent<span> by rewriting </span><span>x^<span>−5</span></span><span> as </span><span><span>1/<span>x^5</span></span>.</span><span>
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>1/<span>x^5</span></span>)</span><span>
</span>
Combine<span> logs to get </span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))
</span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))+log(<span>1/<span>x^5</span></span>)
</span>Combine<span> logs to get </span><span>log(<span><span><span>x^3</span>(<span>y^2</span>−2y+1)/</span><span>x^5</span></span>)</span><span>
</span>log(x^3(y^2−2y+1)/x^5)
Cancel <span>x^3</span><span> in the </span>numerator<span> and </span>denominator<span>.
</span><span>log(<span><span><span>y^2</span>−2y+1/</span><span>x^2</span></span>)</span><span>
</span>Rewrite 1<span> as </span><span><span>1^2</span>.</span>
<span><span>y^2</span>−2y+<span>1^2/</span></span><span>x^2</span>
Factor<span> by </span>perfect square<span> rule.
</span><span>(y−1<span>)^2/</span></span><span>x^2</span>
Replace into larger expression<span>.
</span>
<span>log(<span><span>(y−1<span>)^2/</span></span><span>x^2</span></span>)</span>
Answer:
144 ft
Step-by-step explanation:
I took a math test and I got this question wrong I saw my results and the answer was 144 ft I swear this is the correct answer.
If its correct please mark me as brainliest
Let p be the proportion. Let c be the given confidence level , n be the sample size.
Given: p=0.3, n=1180, c=0.99
The formula to find the Margin of error is
ME = 
Where z (α/2) is critical value of z.
P(Z < z) = α/2
where α/2 = (1- 0.99) /2 = 0.005
P(Z < z) = 0.005
So in z score table look for probability exactly or close to 0.005 . There is no exact 0.005 probability value in z score table. However there two close values 0.0051 and 0.0049 . It means our required 0.005 value lies between these two probability values.
The z score corresponding to 0.0051 is -2.57 and 0.0049 is -2.58. So the required z score will be average of -2.57 and -2.58
(-2.57) + (-2.58) = -5.15
-5.15/2 = -2.575
For computing margin of error consider positive z score value which is 2.575
The margin of error will be
ME = 
=
= 2.575 * 0.0133
ME = 0.0342
The margin of error is 0.0342