Answer:
The value of tension on the cable T = 1065.6 N
Explanation:
Mass = 888 kg
Initial velocity ( u )= 0.8 
Final velocity ( V ) = 0
Distance traveled before come to rest = 0.2667 m
Now use third law of motion
=
- 2 a s
Put all the values in above formula we get,
⇒ 0 =
- 2 × a ×0.2667
⇒ a = 1.2 
This is the deceleration of the box.
Tension in the cable is given by T = F = m × a
Put all the values in above formula we get,
T = 888 × 1.2
T = 1065.6 N
This is the value of tension on the cable.
Answer:
186 N
ExplanatioN
Weight is essentially just a measurement of the force of gravity, so you can use this equation.
F = mg
Force = Mass × Acceleration due to Gravity
F = 19kg × 9.8m/s^2. (Acceleration due to Gravity on Earth.)
F = 186.02N
Responda:
400 g
Explicação:
Dado o seguinte:
Deixe Mass (m1) = m em t1 = 45 ° C
Massa (m2) = 200g em t2 = 15 ° C
Equilíbrio térmico (T) = 35 ° C
Usando a relação:
m1 * C * ΔT = m2 * C * ΔT
Onde m1 e m2 são as massas; C = capacidade de calor específico da água e ΔT é a mudança de temperatura
m1 * ΔT = m2 * ΔT
m * (45 ° C - 35 ° C) = 200 * (35 ° C - 15 ° C)
10 * m = 200 * 20
10 * m = 4000
m = 4000/10
m = 400g
Answer:

Explanation:
When a certain amount of substance is supplied with a certain amount of energy Q, the temperature of the substance increases according to the equation

where
m is the mass of the substance
C is the specific heat capacity
is the change in temperature
In this problem:
m = 150.0 g is the mass of wood
Q=67,000 J is the amount of energy supplied to the wood
is the increase in temperature of the substance
Therefore, the specific heat capacity is:

The observation point on Earth and the two stars form a triangle. The two sides of the triangle are 23.3 ly and 34.76 ly and their included angle is 76.04°. We can use the cos rule to find the third side, which is the distance between the two stars.
c² = a² + b² - 2abCos(C)
c² = (23.3)² + (34.76)² - 2(23.3)(34.76)Cos(76.04)
c = 36.88 light years.