The best and most correct answer among the choices provided by your question is the fourth option or letter D. Trade winds blow towards the equator because t<span>he Equator receives the most heat energy.
</span>The surface air that flows from these subtropical high-pressure belts toward the Equator is deflected toward the west in both hemispheres by the Coriolis effect. These winds blow<span> predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
Answer:
<h2>Changes</h2>
Explanation:
<h3>Variable is something that varies and doesn't remain constant.</h3>
Answer:
Option C is correct.
The magnitude of the field is reduced to half at twice the distance,
Explanation:
The magnetic field produced in a long, straight conductor carrying a current I at distance r is given by
B = μ₀I/2πr
Where μ₀ is the constant permeability of free space.
If we increase the distance by twice then
B = μ₀I/2π(2r)
B = μ₀I/2πr(2)
B = B/2
Therefore, the magnitude of magnetic field is reduced by B/2 at twice the distance.