1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer:
The answer to your question is: 16x + 3
Step-by-step explanation:
Step 1 : f(x) = 8x² + 3x
f(x +h) = 8(x + h)² + 3( x + h)
f(x + h) = 8( x² + 2xh + h²) + 3( x + h)
f (x + h) = 8x² + 16xh + 8h² + 3x + 3h
Step 2 f(x+h) - f(x) = 8x² + 16xh + 8h² + 3x + 3h - ( 8x² + 3x)
= 8x² + 16xh + 8h² + 3x + 3h - 8x² -3x
= 16xh + 8h² + 3 h
Step 3 f(x + h) - f(x)/ h = h(16x + 8h + 3) /h
= 16x + 8h + 3
Step 4 lim f(x + h) - f(x)/ h = lim 16x + 8h + 3 = lim 16x + 8(0) + 3 = 16x + 3
h ⇒0 h ⇒0 h ⇒0
Answer:
x = 37.5
Step-by-step explanation:
By Basic Proportionality Theorem:
