Answer:
b. Specific heat increases as the number of atoms per molecule increases.
c. Specific heat at constant pressure is higher than at constant volume.
d. Monatomic gases behave like ideal gases.
Explanation:
Specific heat of the gas at constant pressure is usually higher than that of the volume.
i.e.
Cp - Cv = R
where R is usually the gas constant.
However, monoatomic gases are gases that exhibit the behavior of ideal gases. This is due to the attribute of the intermolecular forces which plays a negligible role. Nonetheless, the case is not always true for all temperatures and pressure.
Similarly, the increase in the number of atoms per molecule usually brings about an increase in specific heat. This effect is true as a result of an increase in the total number associated with the degree of freedom from which energy can be separated.
Thus, from above explanation:
Option b,c,d are correct while option (a) is incorrect.
Answer:
The reason we can't feel it is that the air within our bodies (in our lungs and stomachs, for example) is exerting the same pressure outwards, so there's no pressure difference and no need for us to exert any effort.
Answer:
Melting and frezzing are physical changes
Answer:
work done will be equal to 305.05 J
Explanation:
We have given force exerted F = 45 N
Angle with the horizontal 
Distance moved due to exerted force d = 9.1 m
Work done is equal to
, here F is force
is angle with horizontal and d is distance moved due to force
So work done 
So work done will be equal to 305.05 J
The Huns' invasion of Europe caused a mass migration driving Germanic tribes of Northern Europe to the borders of the Roman Empire which led to the Barbarian attacks on Rome.