Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
A decrease in the amount of gas in a container will mean a decrease in pressure.
The pressure that will be exerted if four sample of gas are placed in a single 3.5 container is calculated as below
if each gas occupies 675 mmhg
what about 4 gases in the sample
by cross multiplication
= 675 mm hg x 4/1 = 2.7 x10^3mmhg (answer D)
Answer:
0.252 mol
Explanation:
<em>Given the following reaction: </em>
<em>Cu + 2 AgNO₃ → 2 Ag + Cu(NO₃)₂</em>
<em>How many moles of Ag will be produced from 16.0 g Cu, assuming AgNO3 is available in excess.</em>
First, we write the balanced equation.
Cu + 2 AgNO₃ → 2 Ag + Cu(NO₃)₂
We can establish the following relations.
- The molar mass of Cu is 63.55 g/mol.
- The molar ratio of Cu to Ag is 1:1.
The moles of Ag produced from 16.0 g of Cu are:

Answer:
Conociendo el volumen de solución, masa de soluto y su masa molar, es posible determinar: B) Concentración molar
La molaridad es la relación entre el número de moles de soluto y los litros de solución. Más:
M = No moles de solución de soluto / volumen (L)
Y a su vez los moles de soluto se encuentran por:
No moles de soluto = masa soluto / masa molar soluto