Answer:
Software Developer. ...
Database Administrator. ...
Computer Hardware Engineer. ...
Computer Systems Analyst. ...
Computer Network Architect. ...
Explanation:
Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g
The atom<span> then has more protons than electrons and so it will be positively charged, a positive </span>ion<span>. Example: A </span>magnesium atom<span> may lose two electrons and </span>become<span> a Mg2+ </span>ion<span>. Non-metal </span>atoms<span> may gain electrons and </span>become<span> negatively charged. ... (It loses two electrons.)</span>
Answer:
strong nuclear force
Explanation:
1, a force that acts on charged particles
2, a force that holds atomic nuclei together
3, gravity, weak nuclear, electromagnetic, strong nuclear
4, strong nuclear force
5, Gravity and the electromagnetic force have infinite ranges while the nuclear forces have very small ranges.
100% :)
1 kg/L -------------- 0.001 kg/mL
22.4 kg/L --------- ??
22.4 x 0.001 / 1 => 0.0224 kg/mL