Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
The settlement that is expected is 1.043 meters.
Explanation:
Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil
The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

where
'H' is the initial depth of the layer
is the Compression index
is the inital void ratio
is the initial effective stress at the depth
is the change in the effective stress at the given depth
Applying the given values we get

To get rockets into orbit, they need much more thrust than the amount that will get them up to the required altitude. They also need sufficient thrust to allow them to travel with very high orbital speed. ... If speed is less than this, an object will fall back to the Earth