Answer:
True, <em>Regeneration is the only process where increases the efficiency of a Brayton cycle when working fluid leaving the turbine is hotter than working fluid leaving the compressor</em>.
Option: A
<u>Explanation:
</u>
To increase the efficiency of brayton cycle there are three ways which includes inter-cooling, reheating and regeneration. <em>Regeneration</em> technique <em>is used when a turbine exhaust fluids have higher temperature than the working fluid leaving the compressor of the turbine. </em>
<em>Thermal efficiency</em> of a turbine is increased as <em>the exhaust fluid having higher temperatures are used in heat exchanger where the fluids from the compressor enters and increases the temperature of the fluids leaving the compressor.
</em>
Answer:
≅ 111 KN
Explanation:
Given that;
A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8
mass = 85,000 kg
drag co-efficient (C) = 0.37
(velocity (v)= 230 m/s
density (ρ) = 1.0 kg/m³
To calculate the thrust; we need to determine the relation of the drag force; which is given as:
=
× CρAv²
where;
ρ = density of air wind.
C = drag co-efficient
A = Area of the jet
v = velocity of the jet
From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0
SO, 
We can as well say:

We can now replace
in the above equation.
Therefore,
=
× CρAv²
The A which stands as the area of the jet is given by the formula:

We can now have a new equation after substituting our A into the previous equation as:
=
× Cρ 
Substituting our data from above; we have:
=
× 
= 
= 110,990N
in N (newton) to KN (kilo-newton) will be:
= 
= 110.990 KN
≅ 111 KN
In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.
Answer:
No, they need to be somewhat flexible so that forces such as turbulance don't shear the wing off.
Answer:
An artificial Christmas tree is an artificial pine or fir tree manufactured for the specific purpose of use as a Christmas tree. The earliest artificial Christmas trees were wooden, tree-shaped pyramids or feather trees, both developed by Germans. Most modern trees are made of polyvinyl chloride (PVC) but many other types of trees have been and are available, including aluminum Christmas trees and fiber-optic illuminated Christmas trees.
Explanation:
The system includes a disk rotating on a frictionless axle and a bit of clay transferring towards it, as proven withinside the determine above.
<h3>What is the
angular momentum?</h3>
The angular momentum of the device earlier than and after the clay sticks can be the same.
Conservation of angular momentum the precept of conservation of angular momentum states that the whole angular momentum is usually conserved.
- Li = Lf where;
- li is the preliminary second of inertia
- If is the very last second of inertia
- wi is the preliminary angular velocity
- wf is the very last angular velocity
- Li is the preliminary angular momentum
- Lf is the very last angular momentum
Thus, the angular momentum of the device earlier than and after the clay sticks can be the same.
Read more about the frictionless :
brainly.com/question/13539944
#SPJ4