A heater core is a radiator-like device used in heating the cabin of a vehicle. Hot coolant from the vehicle's engine is passed through a winding tube of the core, a heat exchanger between coolant and cabin air.
Explanation:
Answer:
Explanation:
To solve this problem we use the expression for the temperature film
Then, we have to compute the Reynolds number
Re<5*10^{5}, hence, this case if about a laminar flow.
Then, we compute the Nusselt number
but we also now that
but the average heat transfer coefficient is h=2hx
h=2(8.48)=16.97W/m^{2}K
Finally we have that the heat transfer is
In this solution we took values for water properties of
v=16.96*10^{-6}m^{2}s
Pr=0.699
k=26.56*10^{-3}W/mK
A=1*0.5m^{2}
I hope this is useful for you
regards
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer: (a) 9.00 Mega Newtons or 9.00 * 10^6 N
(b) 17.1 m
Explanation: The length of wall under the surface can be given by
The average pressure on the surface of the wall is the pressure at the centeroid of the equilateral triangular block which can be then be calculated by multiplying it with the Plate Area which will provide us with the Resultant force.
Noting from the Bernoulli equation that
From the second image attached the distance of the pressure center from the free surface of the water along the surface of the wall is given by:
Substituting the values gives us the the distance of the surface to be equal to = 17.1 m