1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
11

Unitate de masura in SI pt F​

Engineering
1 answer:
Elena-2011 [213]3 years ago
7 0

Answer:

Electrical Capacitance

Explanation:

To find - unit of measure in SI for F

Solution -

The answer is - Electrical Capacitance

Reason -

The farad (symbol: F) is the SI derived unit of electrical capacitance, the ability of a body to store an electrical charge.

Răspuns:

Capacitate electrică

Explicaţie:

Pentru a găsi - unitate de măsură în SI pentru F

Soluție -

Răspunsul este - Capacitate electrică

Motiv -

Farada (simbolul: F) este unitatea de capacitate electrică derivată din SI, capacitatea unui corp de a stoca o sarcină electrică.

You might be interested in
Assume the following LTI system where the input signal is an impulse train (i.e.,x(t)=∑????(t−nT0)[infinity]n=−[infinity].a)Find
Igoryamba

Answer:

See explaination

Explanation:

The Fourier transform of y(t) = x(t - to) is Y(w) = e- jwto X(w) . Therefore the magnitude spectrum of y(t) is given by

|Y(w)| = |X(w)|

The phase spectrum of y(t) is given by

<Y(w) = -wto + <X(w)

please kindly see attachment for the step by step solution of the given problem.

4 0
3 years ago
A system consists of N very weakly interacting particles at a temperature T sufficiently high so that classical statistical mech
algol [13]

Answer:

the restoring force is = 3/4NKT

Explanation:

check the attached files for answer.

7 0
4 years ago
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
In a website browser address bar, what does “www” stand for?
Ludmilka [50]

Answer:

www stands for world wide web

Explanation:

It will really help you thank you.

3 0
3 years ago
write down your own definition of Engineering, preferably in 4-5 sentences. Maximum of 150 words for your definition???.​
ollegr [7]

Answer:

A charge q1=7.0mc is located at the origin and a second charge q2=-5.0mc is located on the x axis, 0.3m the origin find the electric field at the point p which he's coordinates (0,0.40)m

4 0
3 years ago
Other questions:
  • Material with hardness of 220 Vickers is harder than material with a hardness of 180 Vickers. a)-True b)- False
    8·1 answer
  • Nitrogen gas flows through a long, constant-diameter adiabatic pipe. It enters at 100 psia and 120°F and leaves at 50 psia and 7
    14·2 answers
  • suppose a wheel with a 15 inch diameter is used to turn a water valve stem with a radius of .95 inches. What is the Mechanical a
    15·1 answer
  • You are using a Geiger counter to measure the activity of a radioactive substance over the course of several minutes. If the rea
    6·1 answer
  • If a motorist moves with a speed of 30 km/hr, and covers the distance from place A to place B
    13·1 answer
  • Convert 25 mm into in.
    13·1 answer
  • Technician A says that reversing the direction of refrigerant (as with a heat pump system) could be done to provide cabin heat.
    14·1 answer
  • In software engineering how do you apply design for change?
    13·1 answer
  • A force is a push or pull in? A.a circle B.an arc C.a straight line
    5·1 answer
  • 1) What output force (Fout) is produced if the lever arm length (rout) is 100 mm?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!