When A is reflected over y=-1, -1+(-1-(-2))=0, it lands on (-5, 0), when it is then reflected over x=3, 3+(3-(-5))=11, it lands on (11,0)
If you can't visualize it, draw a graph.
Answer:
9. <em><u>1</u></em><em><u>0</u></em>
10. <em><u>1</u></em><em><u>0</u></em><em><u>/</u></em><em><u>2</u></em><em><u>6</u></em>
11.<em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>2</u></em><em><u>6</u></em>
12.<em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>1</u></em><em><u>0</u></em>
Step-by-step explanation:
9.<em><u>U</u></em><em><u>sing </u></em><em><u>Pythagoras</u></em><em><u> Theorem</u></em>
<em><u>=</u></em><em><u>></u></em><em><u> </u></em><em><u>P </u></em><em><u>=</u></em><em><u> </u></em><em><u>√</u></em><em><u>(</u></em><em><u>H</u></em><em><u>²</u></em><em><u>-</u></em><em><u>B</u></em><em><u>²</u></em><em><u>)</u></em>
<em><u>Where</u></em><em><u>,</u></em>
<em><u>P </u></em><em><u>=</u></em><em><u> </u></em><em><u>perpendicular</u></em><em><u> </u></em>
<em><u>B </u></em><em><u>=</u></em><em><u> </u></em><em><u>Base</u></em>
<em><u>H </u></em><em><u>=</u></em><em><u> </u></em><em><u>Hypotenuse</u></em>
<em><u>1</u></em><em><u>0</u></em><em><u>.</u></em><em><u> </u></em><em><u>P/</u></em><em><u>H</u></em>
<em><u>1</u></em><em><u>1</u></em><em><u>.</u></em><em><u> </u></em><em><u>B/</u></em><em><u>H</u></em>
<em><u>1</u></em><em><u>2</u></em><em><u>.</u></em><em><u> </u></em><em><u>P/</u></em><em><u>B</u></em>
Answer:
36 mph.
Step-by-step explanation:
Let x be the distance to the town hall.
Trip there:
speed (s) = distance / time
s = x / 1.5 so x = 1-5s
Trip back:
s - 12 = x / 2 so x = 2s - 24
AS they are both = to x:
1.5s = 2s - 24
0.5s = 24
s = 48.
Average speed on the way back = 48-12 = 36 mph.
I think if you guess there's a 50/50 chance of you passing or failing. So if I were you, I would work them out. Hope I helped!
Answer:
y=8.
Step-by-step explanation:
1) if according to the condition slope=0, then the slope-interception form of the required equation is: y=i, where i - interception;
2) if according to the condition the point (4;8) belongs to the required equation, then the required equation is: y=8