So you have to plug in the amount to the cost making you problem look like this:
0.85(30)+2.5(2)
25.5+5=30.5
Answer:
a = 4
Step-by-step explanation:
Given equation:
4a - 5 = 11
Add 5 to both sides:
⇒ 4a - 5 + 5 = 11 + 5
⇒ 4a = 16
Divide both sides by 4:
⇒ 4a ÷ 4 = 16 ÷ 4
⇒ a = 4
Answer:

Step-by-step explanation:
![\displaystyle = \frac{x^2(y-2)}{3y} \\\\Put \ x = 3, \ y = -1\\\\= \frac{(3)^2(-1-2)}{3(-1)}\\\\= \frac{9(-3)}{-3} \\\\= 9 \\\\ \rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%20%5Cfrac%7Bx%5E2%28y-2%29%7D%7B3y%7D%20%5C%5C%5C%5CPut%20%5C%20x%20%3D%203%2C%20%5C%20y%20%3D%20-1%5C%5C%5C%5C%3D%20%5Cfrac%7B%283%29%5E2%28-1-2%29%7D%7B3%28-1%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B9%28-3%29%7D%7B-3%7D%20%5C%5C%5C%5C%3D%209%20%5C%5C%5C%5C%20%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
Answer:
Step-by-step explanation:
Since the length of time taken on the SAT for a group of students is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = length of time
u = mean time
s = standard deviation
From the information given,
u = 2.5 hours
s = 0.25 hours
We want to find the probability that the sample mean is between two hours and three hours.. It is expressed as
P(2 lesser than or equal to x lesser than or equal to 3)
For x = 2,
z = (2 - 2.5)/0.25 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.02275
For x = 3,
z = (3 - 2.5)/0.25 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.97725
P(2 lesser than or equal to x lesser than or equal to 3)
= 0.97725 - 0.02275 = 0.9545