Answer:
more reliable. The more results the better results you get.
Explanation:
After ionization, sodium gains a net positive charge cuz sodium loses its 1 valence electron to gain the nearest stable octet which is neon{Ne}. Hope it helps
Chemical changes<span> occur when a substance combines with another to form a new substance, called </span>chemical<span> synthesis or, alternatively, </span>chemical <span>decomposition into two or more different substances.
So which one do you think is the answer?</span>
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!
Answer:
Polar/Hydrophilic
Explanation:
Fluorine, Nitrogen and Oxygen are strong electronegative atoms and by definition, Electronegativity is the amount of pull or the high affinity of an atom to electrons.
Polar bond occurs when there is a high difference between the electronegativity value of both atoms that take part in the bond.
A polar molecule has a net dipole from the distribution of its positive and negayive charges. Hydrophobic and Hydrophilic (in chemistry, Polar) are terms dependent on the overall distribution of charge in its molecule.
Therefore, bonds between C-N, C-O and C-Cl are polar covalent bonds a d this is because of the jigh electronegativity possessed by Nitrogen, Oxygen and Chlorine.