Answer:
The molecules of solid CO2 are much closer together than the molecules of CO2 gas.
Answer:
This question is incomplete but the completed question is below
Which Of These Species Is Most Likely To Be A Lewis Acid And Is Also Least Likely To Be A Brønsted Acid? (A) NH4⁺ (B) BF₃ (C) H₂O (D) OH⁻
The correct option is B
Explanation:
A lewis acid is a substance that accepts (or is capable of accepting) a pair of electrons. For example BF₃, while a lewis base is a substance that donates (or is capable of donating) a pair of electrons. For example OH⁻.
If we take a look at the boron (B) in BF₃, it has 3 electrons on it's outermost shell, each of which are bonded to flourine and can still accept a pair of electrons (lone pair). <u>This makes it very likely to be a lewis acid</u>.
Bronsted lowry acid is a substance that donates or can donate a proton or H⁺ (for example HCl) while bronsted lowry base is a substance that accepts or can accept a proton or H⁺ (for example NH₃).
<u>BF₃ cannot donate a proton or H⁺ hence it is least likely to be called a bronsted acid.</u>
Answer:
The balanced chemical equation:

Heat of combustion per gram of phenol is 32.454 kJ/g
Heat of combustion per gram of phenol is 3,050 kJ/mol
Explanation:

Heat capacity of calorimeter = C = 11.66 kJ/°C
Initial temperature of the calorimeter = 
Final temperature of the calorimeter = 
Heat absorbed by calorimeter = Q

Heat released during reaction = Q'
Q' = -Q ( law of conservation of energy)
Energy released on combustion of 1.800 grams of phenol = Q' = -(58.4166 kJ)
Heat of combustion per gram of phenol:

Molar mass of phenol = 94 g/mol
Heat of combustion per gram of phenol:

Answer:
Explanation:
Every atom has no overall charge (neutral). This is because they contain equal numbers of positive protons and negative electrons. These opposite charges cancel each other out making the atom neutral.