It's called buoyancy. It is the tendency of an object to float
For part a)
Since the conical surface is not exposed to the radiation coming from the walls only from the circular plate and assuming steady state, the temperature of the conical surface is also equal to the temperature of the circular plate. T2 = 600 K
For part b)
To maintain the temperature of the circular plate, the power required would be calculated using:
Q = Aσ(T₁⁴ - Tw⁴)
Q = π(500x10^-3)²/4 (5.67x10^-8)(600⁴ - 300⁴)
Q = 5410.65 W
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
Explanation:
Displacement=Velocity×time
=24.7×16.00
=395.2m
Therefore the displacement within the time interval is 395.2m
Answer:
3) flow of electrons, if im correct