Calculate the pressure due to sea water as density*depth.
That is,
pressure = (1025 kg/m^3)*((9400 m)*(9.8 m/s^2) = 94423000 Pa = 94423 kPa
Atmospheric pressure is 101.3 kPa
Total pressure is 94423 + 101.3 = 94524 kPa (approx)
The area of the window is π(0.44 m)^2 = 0.6082 m^2
The force on the window is
(94524 kPa)*(0.6082 m^2) = 57489.7 kN = 57.5 MN approx
Answer:
No
Explanation:
The fastest recorded time for a person to run 100 metres is 9.58 seconds, which is the equivalent of 10.4 metres per second
Answer:
D = 2.38 m
Explanation:
This exercise is a diffraction problem where we must be able to separate the license plate numbers, so we must use a criterion to know when two light sources are separated, let's use the Rayleigh criterion, according to this criterion two light sources are separated if The maximum diffraction of a point coincides with the first minimum of the second point, so we can use the diffraction equation for a slit
a sin θ = m λ
Where the first minimum occurs for m = 1, as in these experiments the angle is very small, we can approximate the sine to the angle
θ = λ / a
Also when we use a circular aperture instead of slits, we must use polar coordinates, which introduce a numerical constant
θ = 1.22 λ / D
Where D is the circular tightness
Let's apply this equation to our case
D = 1.22 λ / θ
To calculate the angles let's use trigonometry
tan θ = y / x
θ = tan⁻¹ y / x
θ = tan⁻¹ (4.30 10⁻² / 140 10³)
θ = tan⁻¹ (3.07 10⁻⁷)
θ = 3.07 10⁻⁷ rad
Let's calculate
D = 1.22 600 10⁻⁹ / 3.07 10⁻⁷
D = 2.38 m
This is an example of state change from solid to liquid.