Answer:
D. Frozen water is less dense than liquid water.
Explanation:
Titanic sank in the North Atlantic Ocean in the year 1912. There were more than 2000 passengers on board from which about 1500 died.
Frozen water that is ice has less density than liquid water. The density of ice is
and the density of the water is
.
Due to this very slight difference in density, ice floats on water. Titanic, on the night of April 14, 1912, crashed into an iceberg around midnight which caused opening of 5 of its watertight compartments. The water filled into the ship and it eventually sank in.
Answer: 
Explanation:
Given
Volume of air 
Temperature of air 
Increase in temperature 
Specific heat for diatomic gas is 
Energy required to increase the temperature is
![\Rightarrow Q=nC_pdT\\\\\Rightarrow Q=n\times \dfrac{7R}{2}\times \Delta T\\\\\Rightarrow Q=\dfrac{7}{2}nR\Delta T\\\\\Rightarrow Q=\dfrac{7}{2}\times \dfrac{PV}{T}\times \Delta T\quad [\text{using PV=nRT}]](https://tex.z-dn.net/?f=%5CRightarrow%20Q%3DnC_pdT%5C%5C%5C%5C%5CRightarrow%20Q%3Dn%5Ctimes%20%5Cdfrac%7B7R%7D%7B2%7D%5Ctimes%20%5CDelta%20T%5C%5C%5C%5C%5CRightarrow%20Q%3D%5Cdfrac%7B7%7D%7B2%7DnR%5CDelta%20T%5C%5C%5C%5C%5CRightarrow%20Q%3D%5Cdfrac%7B7%7D%7B2%7D%5Ctimes%20%5Cdfrac%7BPV%7D%7BT%7D%5Ctimes%20%5CDelta%20T%5Cquad%20%5B%5Ctext%7Busing%20PV%3DnRT%7D%5D)
Insert the values

According to Newton's second Law of motion, if the mass of an object is 10 kg and the force is 10 newtons, then the acceleration is 1m/s².
<h3>How to calculate acceleration?</h3>
The acceleration of a moving body can be calculated by dividing the force of the body by its mass.
According to this question, the mass of an object is 10 kg and the force is 10 newtons, then the acceleration can be calculated as follows:
acceleration = 10N ÷ 10kg
acceleration = 1m/s²
Therefore, according to Newton's second Law of motion, if the mass of an object is 10 kg and the force is 10 newtons, then the acceleration is 1m/s².
Learn more about acceleration at: brainly.com/question/12550364
#SPJ1
Answer:
The potential energy of the ball is 784 joules. And the kinetic energy of it is 392 while falling halfway down.
Explanation:
PE = mass (2kg) * Gravitational acceleration (9.8 m/s^2)* height (40 meters)
KE = 1/2 mass (1 kg) * velocity^2 (19.8)
Answer:
P_2 = 1.62 atm
Explanation:
We know the formula for the rms speed of the ideal gas is given by

P= pressure of the surrounding
V= volume of the vessel
m= mass of the gas
Now, From this formula rms speed (v_rms) is directly proportional to square root is pressure.
Then

given that v_rsm,1= v0
and v_rsm,2=0.9v0
putting these values we get

P_2 = 1.62 atm