(a) Frequency of sound wave is inversely proportional to string length.
(b) Pitch of a sound depends on the frequency while loudness depends on the amplitude of sound.
<h3>
Relationship between string length and frequency</h3>
The relationship between string length and frequency is given as;
λ = 2L
where;
- λ is wavelength
- L is length of the string
v = fλ
f = v/λ
f = v/2L
Thus, frequency of sound wave is inversely proportional to string length.
<h3>Relationship between pitch and loudness of sound</h3>
The pitch of a sound depends on the frequency while loudness of a sound depends on the amplitude of sound waves.
Learn more about pitch and loudness here: brainly.com/question/61859
Newton’s first law of inertia
Less force, same work
The circuit change when the wire is added will see a short circuit occur and makes bulbs 1 and 2 turn off but keeps bulbs 3 and 4 lit. Option D. This is further explained below.
<h3>
How does the circuit change when the wire is added?</h3>
Generally, Electronic circuits consist of a series of interconnected parts that form a closed loop through which electricity may flow.
In conclusion, If two wires are linked together, a short circuit will develop, cutting power to bulbs 1 and 2. But there is no impact on bulbs 3 and 4. There is no problem with bulbs 3 and 4.
Read more about circuit
brainly.com/question/21505732
#SPJ1
Answer:
-20.0 m/s and 30.0 m/s
Explanation:
Momentum is conserved:
m (30.0) + m (-20.0) = m v₁ + m v₂
30.0 − 20.0 = v₁ + v₂
10.0 = v₁ + v₂
Since the collision is perfectly elastic, energy is also conserved. Since there's no rotational energy or work done by friction, the initial kinetic energy equals the final kinetic energy.
½ m (30.0)² + ½ m (-20.0)² = ½ mv₁² + ½ mv₂²
(30.0)² + (-20.0)² = v₁² + v₂²
1300 = v₁² + v₂²
We now have two equations and two variables. Solve the system of equations using substitution:
1300 = v₁² + (10 − v₁)²
1300 = v₁² + 100 − 20v₁ + v₁²
0 = 2v₁² − 20v₁ − 1200
0 = v₁² − 10v₁ − 600
0 = (v₁ + 20) (v₁ − 30)
v₁ = -20, 30
If v₁ = -20, v₂ = 30.
If v₁ = 30, v₂ = -20.
So either way, the final velocities are -20.0 m/s and 30.0 m/s.
Answer:
38 m/s
43 m/s
Explanation:
x = 18t + 5.0t²
The instantaneous velocity is the first derivative:
v = 18 + 10.t
At t = 2.0:
v = 18 + 10.(2.0)
v = 38 m/s
The average velocity is the change in position over change in time.
v = Δx / Δt
v = [ (18t₂ + 5.0t₂²) − (18t₁ + 5.0t₁²) ] / (t₂ − t₁)
Between t = 2.0 and t = 3.0:
v = [ (18(3.0) + 5.0(3.0)²) − (18(2.0) + 5.0(2.0)²) ] / (3.0 − 2.0)
v = [ (54 + 45) − (36 + 20.) ] / 1.0
v = 99 − 56
v = 43 m/s