Let d = distance that the fugitive travels to get on the train.
Let t = the time to travel the distance d.
The fugitive starts from rest accelerates at a = 3.8 m/s².
Therefore
(1/2)*(3.8 m/s²)*(t s)² = (d m)
1.9 t² = d (1)
The train travels at constant speed 5.0 m/s.
Therefore
(5.0 m/s)*(t s) = d
5t = d (2)
If the fugitive successfully boards the train, then equate (1) and (2).
1.9t² = 5t
t = 0 or t = 2.6316 s
Ignore t = 0, so t = 2.6316 s.
The speed of the fugitive after 2.6316 s, is
v = (3.8 m/s²)*(2.6316 s) = 10 s
This speed exceeds the maximum speed of the fugitive, therefore the fugitive fails to get on the train.
Answer: The fugitive fails to get on the train.
Answer:
b. Medicine balls
Explanation:
A medicine ball (also called an exercise ball, or a health ball) is a weighted ball about the shoulder diameter (approx. 13.7 inches), often used for recovery and strength training.... In 1705 similar large balls had been used in Persia.So you can use your medicine ball as a projectile to boost the strength of your throws.
Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?
Answer:mile
Explanation: heres a hint think aboyt the distance between your house to school