1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
10

What is the kinetic energy of a jogger with a mass of 65 kg traveling at a velocity of 2.5 m/s?

Physics
2 answers:
scZoUnD [109]3 years ago
7 0
KE=203.125 J !!!!!!!!!
nekit [7.7K]3 years ago
6 0
Kinetic energy = 1/2mv2

1/2 x 65 x 2.5^2
=203.125J
You might be interested in
PLEASE PLEASE HELP!!!Answer the following questions
adoni [48]

Answer:

u have to stop

slow down

move forward

6 0
3 years ago
The engineer of a train traveling at 30 m/sec sees a cow on the tracks. He applies the brakes and causes the train to accelerate
sineoko [7]

Answer:The train travels 105 meters after applying the brakes

Explanation:If he decelerates 1.5 every minute, then he went from 28,5 m/s, to 27.0 m/s, to 25.5 m/s, to 24.0 m/s, after 4 seconds. Add all this together and youll get 105 meters moved in 4 seconds after he hit the brakes, I dont have a notebook on me though sorry :/

8 0
3 years ago
Light with an intensity of 1 kW/m2 falls normally on a surface and is completely absorbed. The radiation pressure is
kobusy [5.1K]

Answer:

The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.

Explanation:

Given;

intensity of light, I = 1 kW/m²

The radiation pressure of light is given as;

Radiation \ Pressure = \frac{Flux \ density}{Speed \ of \ light}

I kW = 1000 J/s

The energy flux density = 1000 J/m².s

The speed of light = 3 x 10⁸ m/s

Thus, the radiation pressure of the light is calculated as;

Radiation \ pressure = \frac{1000}{3*10^{8}} \\\\Radiation \ pressure =3.33*10^{-6} \ Pa

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.

6 0
3 years ago
A block weighting 400kg rests on a horizontal surface and support on top of it another block of weight 100kg placed on the top o
masha68 [24]

The horizontal force applied to the block is approximately 1,420.84 N

The known parameters;

The mass of the block, w₁ = 400 kg

The orientation of the surface on which the block rest, w₁ = Horizontal

The mass of the block placed on top of the 400 kg block, w₂ = 100 kg

The length of the string to which the block w₂ is attached, l = 6 m

The coefficient of friction between the surface, μ = 0.25

The state of the system of blocks and applied force = Equilibrium

Strategy;

Calculate the forces acting on the blocks and string

The weight of the block, W₁ = 400 kg × 9.81 m/s² = 3,924 N

The weight of the block, W₂ = 100 kg × 9.81 m/s² = 981 N

Let <em>T</em> represent the tension in the string

The upward force from the string = T × sin(θ)

sin(θ) = √(6² - 5²)/6

Therefore;

The upward force from the string = T×√(6² - 5²)/6

The frictional force = (W₂ - The upward force from the string) × μ

The frictional force, F_{f2} = (981 - T×√(6² - 5²)/6) × 0.25

The tension in the string, T = F_{f2} × cos(θ)

∴ T = (981 - T×√(6² - 5²)/6) × 0.25 × 5/6

Solving, we get;

T = \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8} \approx 183.27

Frictional \ force, F_{f2} = \left (981 -  \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8}  \times \dfrac{\sqrt{6^2 - 5^2} }{6} \times  0.25 \right) \approx 219.92

The frictional force on the block W₂, F_{f2} ≈ 219.92 N

Therefore;

The force acting the block w₁, due to w₂ F_{w2} = 219.92/0.25 ≈ 879.68

The total normal force acting on the ground, N = W₁ + \mathbf{F_{w2}}

The frictional force from the ground, \mathbf{F_{f1}} = N×μ + \mathbf{F_{f2}} = P

Where;

P = The horizontal force applied to the block

P = (W₁ + \mathbf{F_{w2}}) × μ + \mathbf{F_{f2}}

Therefore;

P = (3,924 + 879.68) × 0.25 + 219.92 ≈ 1,420.84

The horizontal force applied to the block, P ≈ 1,420.84 N

Learn more about friction force here;

brainly.com/question/18038995

3 0
3 years ago
5. What happens to the arrangement of water molecules as ice melts?
m_a_m_a [10]

Answer: I am pretty sure the answer is B

Explanation: If not sorry bro.

7 0
3 years ago
Other questions:
  • How can you produce more power than an excavator?
    14·2 answers
  • The equation of a transverse wave traveling along a very long string is y 6.0 sin(0.020px 4.0pt), where x and y are expressed in
    6·1 answer
  • Exercising with a friend or partner will enhance your safety. true or false
    15·2 answers
  • A simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top
    11·1 answer
  • PLEASE SEND GIVE THE ANSWER AS FAST AS POSSIBLE
    6·1 answer
  • The weight of a cuboid box is 288 N. Find its mass.​
    9·1 answer
  • 14. Which one of the following pictures shows the object that is the most dense? *
    13·1 answer
  • In the figures below, there are four copper wires shown. Assuming that all the wires are the same temperature, which has the gre
    13·1 answer
  • Which form can solutions come in?<br><br> liquid<br><br> gas<br><br> solid<br><br> all of the above
    14·1 answer
  • The speed that a tsunami can travel is modeled by the equation , where s is the speed in kilometers per hour and d is the averag
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!