To solve this problem, we must know the gravitational force
of the planet. The equation would be,

This would calculate the force between two objects with
masses m1 and m2 and the gravitational constant, G, is 6.67 x 10^-11 m3 s-2
kg-1 and with r as the distance between the objects.
Thus,
F = (6.67 x 10^-11 m3 s-2 kg-1) * (5.68 x 10^26 kg) * (65
kg) * ((1/6.03 x 10^7 m)^2)
F = 678 kg/s^2 or 678 N
Answer is letter B.
Answer:
Force exerted by the air on the propellers = 46000 - 9200
= 36800 N
Hope this helps!
Answer:
<em>T</em><em>h</em><em>e</em><em>r</em><em>e</em><em> </em><em>are</em><em> </em><em>t</em><em>wo hydrogen </em><em>atom</em><em> </em><em>in</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>reactants</em><em>.</em>
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
Answer:
Part a)

Part b)
T = 4.68 s
Explanation:
Part a)
Shell is fired at speed of 40 m/s at angle of 35 degree
so here we have


since gravity act opposite to vertical speed of the shell so at the highest point of its trajectory the vertical component of the speed will become zero
so at the highest point the speed is given

Part b)
After completing the motion we know that the displacement of the object will be zero in Y direction
so we have



