Start with 2,000 grams.
After 1 half-life, 1,000 grams are left.
After another half-life, 500 are left.
After another half-life, 250 are left.
After another half-life, 125 are left.
That was FOUR half-lifes.
X = 4 .
Answer:
2452.79432 m/s
Explanation:
m = Mass of ice
= Latent heat of steam
= Specific heat of water
= Latent heat of ice
v = Velocity of ice
= Change in temperature
Amount of heat required for steam

Heat released from water at 100 °C

Heat released from water at 0 °C

Total heat released is

The kinetic energy of the bullet will balance the heat

The velocity of the ice would be 2452.79432 m/s
ANSWER

EXPLANATION
Parameters given:
Initial velocity, u = 26.2 m/s
When the vase reaches its maximum height, its velocity becomes 0 m/s. That is the final velocity.
We can now apply one of Newton's equations of motion to find the height:

where a = g = acceleration due to gravity = 9.8 m/s²
Therefore, we have that:

That is the height that the vase will reach.
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of

