Answer:
(for small oscillations)
Explanation:
The total energy of the pendulum is equal to:

For small oscillations, the equation can be re-arranged into the following form:

Where:
, measured in radians.
If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is
and the total energy of the pendulum is:

The factor of change is:


Answer:
The gravitational force is 3.509*10^17 times larger than the electrostatic force.
Explanation:
The Newton's law of universal gravitation and Coulombs law are:

Where:
G= 6.674×10^−11 N · (m/kg)2
k = 8.987×10^9 N·m2/C2
We can obtain the ratio of these forces dividing them:
--- (1)
The mass of the moon is 7.347 × 10^22 kilograms
The mass of the earth is 5.972 × 10^24 kg
And q1=q2=Na*e=(6.022*10^23)*(1.6*10^-19)C=9.635*10^4 C
Replacing these values in eq1:

Therefore

This means that the gravitational force is 3.509*10^17 times larger than the electrostatic force, when comparing the earth-moon gravitational field vs 1mol electrons - 1mol protons electrostatic field
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.