Looks correct but the second to last I would of put abiotic and biotic factors but I don’t know what’s right for you
Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
Answer:
hello your question is incomplete below is the missing part of the question
answer : 104°c
Explanation:
The Eutectic temperature for the mixture is 104°c
From the chart attached below it can be seen that the temperature from the two lines of best fit cross is 104°c
Answer:
1.03 M
Explanation:
Step 1: Write the balanced equation
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of HCl
30.0 mL (0.0300 L) of 0.500 M HCl react.
0.0300 L × 0.500 mol/L = 0.0150 mol
Step 3: Calculate the moles of NaOH that react with 0.0150 moles of HCl
The molar ratio of NaOH to HCl is 1:1. The moles of NaOH that react are 1/1 × 0.0150 mol = 0.0150 mol.
Step 4: Calculate the molar concentration of NaOH
0.0150 moles of NaOH are in 14.5 mL (0.0145 L).
M = 0.0150 mol/0.0145 L = 1.03 M
Radiant energy or electrical energy