Any buffer exists in this equilibrium
HA <=>

In a buffer, there is a large reservoir of both the undissociated acid (HA) and its conjugate base (

)
When a strong acid is added, it reacts with the large reservoir of the conjugate base (

) forming a salt and water. Since this large reservoir of the conjugate base is used, the ph does not alter drastically, but instead resist the pH change.
The periodic table is one of the most important tools in the history of chemistry. It describes the atomic properties of every known chemical element in a concise format, including the atomic number, atomic mass and relationships between the elements. Elements with similar chemical properties are arranged in columns in the periodic table.
The table thus is a quick reference as to what elements may behave the same chemically or which may have similar weights or atomic structures.
Hope this answer helps you
II. sulfur (S) and carbon (C)
and
III. fluorine (F) and oxygen (O)
will form covalent bonds, so the answer will be:
e. II and III
Explanation:
To know is what type of bond is formed between atoms we need to look at the electronegativity difference between the atoms.
If the electronegativity difference is less than 0.4 there is a nonpolar covalent bond.
If the electronegativity difference is between 0.4 and 1.8 there is a polar covalent bond. (if is a metal involved we consider the bond to be ionic)
If the electronegativity difference is greater then 1.8 there is an ionic bond.
We have the following cases:
I. lithium (Li) and sulfur (S)
electronegativity difference = 2.5 (S) - 1 (Li) = 1.5 but because there is a metal involved the bond will be ionic
II. sulfur (S) and carbon (C)
electronegativity difference = 2.5 (S) - 2.5 (C) = 0 so the bond will be nonpolar covalent
III. fluorine (F) and oxygen (O)
electronegativity difference = 4 (F) - 3.5 (O) = 0.5 so the bond will be polar covalent bond.
Learn more about:
covalent and ionic bonds
brainly.com/question/1802971
#learnwithBrainly
Answer : The excess reactant in the combustion of methane in opem atmosphere is
molecule.
Solution : Given,
Mass of methane = 23 g
Molar mass of methane = 16.04 g/mole
The Net balanced chemical reaction for combustion of methane is,

First we have to calculate the moles of methane.
=
= 1.434 moles
From the above chemical reaction, we conclude that
1 mole of methane react with the 2 moles of oxygen
and 1.434 moles of methane react to give
moles of oxygen
The Moles of oxygen = 2.868 moles
Now we conclude that the moles of oxygen are more than the moles of methane.
Therefore, the excess reactant in the combustion of methane in open atmosphere is
molecule.
Answer:
See explanation
Explanation:
The question is incomplete because the images of the models are absent. However, i will try to give you a general description of what the correct answer should be.
Beryllium is a member of group 2 in the periodic table. Beryllium has an atomic number of 4. This implies that it has four protons in its nucleus and four electrons in its shells. In a neutral atom, the number of electrons on the shells is equal to the number of protons in the nucleus.
The electronic configuration of Beryllium is 1s2 2s2. This implies that it should have two shells each containing only two electrons each.
Since we are using white foam balls for protons and black foam balls for neutrons, the clear plastic will contain four white foam balls and five black foam balls since the mass number of beryllium is 9 and number of neutrons = mass number - number of protons.
Four blue foam balls hanging from strings will represent the electrons around the nucleus.
Any model that corresponds to the description above is the correct answer.