Answer:
B) 1.2 N, toward the center of the circle
Explanation:
The circumference of the circle is:
C = 2πr
C = 2π (0.70 m)
C = 4.40 m
So the velocity of the ball is:
v = C/t
v = 4.40 m / 0.60 s
v = 7.33 m/s
Sum of the forces in the radial direction:
∑F = ma
T = m v² / r
T = (0.015 kg) (7.33 m/s)² / (0.70 m)
T = 1.2 N
The tension force is 1.2 N towards the center of the circle.
Answer:
the refracted rays neither converge nor diverge. After refracting, the light rays are traveling parallel to each other and cannot produce an image.
Explanation:
The resultant force is 5N.So the box moves to right with constant acceleration.
Answer:
Explanation:
We shall apply law of conservation of momentum during the collision of ball A and B .
Total momentum before collision of A and B = .35 x 10 = 3.5 kg m/s
Let the velocity of B after collision be v .
Total momentum after collision = .35 x 2 + .35v
According to law of conservation of momentum
.35 x 2 + .35v = 3.5
.35 v = 2.8
v = 8 m /s .
The direction of B will be same as direction of A .
Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?