Carly will have one apple left, (3-2=1)
Answer:
D
Step-by-step explanation:
our basic Pythagorean identity is cos²(x) + sin²(x) = 1
we can derive the 2 other using the listed above.
1. (cos²(x) + sin²(x))/cos²(x) = 1/cos²(x)
1 + tan²(x) = sec²(x)
2.(cos²(x) + sin²(x))/sin²(x) = 1/sin²(x)
cot²(x) + 1 = csc²(x)
A. sin^2 theta -1= cos^2 theta
this is false
cos²(x) + sin²(x) = 1
isolating cos²(x)
cos²(x) = 1-sin²(x), not equal to sin²(x)-1
B. Sec^2 theta-tan^2 theta= -1
1 + tan²(x) = sec²(x)
sec²(x)-tan(x) = 1, not -1
false
C. -cos^2 theta-1= sin^2
cos²(x) + sin²(x) = 1
sin²(x) = 1-cos²(x), our 1 is positive not negative, so false
D. Cot^2 theta - csc^2 theta=-1
cot²(x) + 1 = csc²(x)
isolating 1
1 = csc²(x) - cot²(x)
multiplying both sides by -1
-1 = cot²(x) - csc²(x)
TRUE
Answer:
378.5 or just 378
Step-by-step explanation:
This is a linear model with x representing the number of generations that's gone by, y is the number of butterflies after x number of generations has gone by, and the 350 represents the number of butterflies initially (before any time has gone by. When x = 0, y = 350 so that's the y-intercept of our equation.)
The form for a linear equation is y = mx + b, where m is the rate of change and b is the y-intercept, the initial amount when x = 0.
Our rate of change is 1.5 and the initial amount of butterflies is 350, so filling in the equation we get a model of y = 1.5x + 350.
If we want y when x = 19, plug 19 in for x and solve for y:
y = 1.5(19) + 350
y = 378.5
Since we can't have .5 of a butterfly we will round down to 378
Answer:
Figures A,D are polygons.
Reason:
Polygon is a closed figure with atleast three strange lines and angles.
To find how much lemonade the pitcher can hold, you will add the amounts that he drank and remained to get a total. This total would be the starting amount.
8 oz + 8 oz + 24 oz = 40 ounces
The pitcher originally held 40 ounces of lemonade.