1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga_2 [115]
2 years ago
11

The direction that an induced current flows in a circuit is given by

Physics
1 answer:
AURORKA [14]2 years ago
8 0

Answer:

Lenz's law

Explanation:

it  states that induced emf  of  different polarities induces a current whose magnetic field opposes the change in magnetic flux through the coil  in order to ensure that original flux is maintained through the coil  when current flows in it.

according to Faraday' s law of electromagnetic induction

Where -ve sign due to lenz's law

Emf is the induced voltage also known as electromotive force

N is the number of loops.

dϕ Change in magnetic flux.

dt Change in time.

You might be interested in
The driver of a car travels at 90 km / h, observes some children playing on the road 50 m away, and applies the brakes, managing
Orlov [11]

Answer:

13,750 N

Yes

Explanation:

Given:

v₀ = 90 km/h = 25 m/s

v = 0 m/s

t = 4 s

Find: a and Δx

a = Δv / Δt

a = (0 m/s − 25 m/s) / (4 s)

a = -6.25 m/s²

F = ma

F = (2200 kg) (-6.25 m/s²)

F = -13,750 N

Δx = ½ (v + v₀) t

Δx = ½ (0 m/s + 25 m/s) (4 s)

Δx = 50 m

6 0
3 years ago
A gymnast of mass 62.0 kg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume t
MrRissso [65]

Answer:

a) T = 608.22 N

b) T = 608.22 N

c) T = 682.62 N

d) T = 533.82 N

Explanation:

Given that the mass of gymnast is m = 62.0 kg

Acceleration due to gravity is g = 9.81 m/s²

Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.

So;

To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;

T = mg

= (62.0 kg)(9.81 m/s²)

= 608.22 N

When the gymnast climbs the rope at a constant rate tension in the string is

= (62.0 kg)(9.81 m/s²)

= 608.22 N

When the gymnast climbs up the rope with an upward acceleration of magnitude

a = 1.2 m/s²

the tension in the string is  T - mg = ma (Since acceleration a is upwards)

T = ma + mg

= m (a + g )

= (62.0 kg)(9.81 m/s² + 1.2  m/s²)

= (62.0 kg) (11.01 m/s²)

= 682.62 N

When the gymnast climbs up the rope with an downward acceleration of magnitude

a = 1.2 m/s² the tension in the string is  mg - T = ma (Since acceleration a is downwards)

T = mg - ma

= m (g - a )

= (62.0 kg)(9.81 m/s² - 1.2 m/s²)

= (62.0 kg)(8.61 m/s²)

= 533.82 N

5 0
2 years ago
Find the range of a projectile launched at an angle of 30° with an initial velocity of 20m/s.​
Tems11 [23]

Answer:

<em>The range is 35.35 m</em>

Explanation:

<u>Projectile Motion</u>

It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.

Being vo the initial speed of the object, θ the initial launch angle, and g=9.8m/s^2 the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

\displaystyle d={\frac  {v_o^{2}\sin(2\theta )}{g}}

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:

\displaystyle d={\frac  {20^{2}\sin(2\cdot 30^\circ )}{9.8}}

\displaystyle d={\frac  {400\sin(60^\circ )}{9.8}}

d=35.35\ m

The range is 35.35 m

7 0
3 years ago
A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
jonny [76]

Answer:

<em>Entropy Change = 0.559 Times</em>

Explanation:

Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.

5 0
3 years ago
A pilot is upside down at the top of an inverted loop of radius 3.20 x 103 m. At the top of the loop his normal force is only on
n200080 [17]

Answer:

6858.5712 m/s

Explanation:

Given that:

Radius, r

R = 3.20 * 10^3.

Normal force = 0.5 * normal weight

Normal force = Fn ; Normal weight = Fg

Fn = 0.5Fg

Recall:

mv² / R = Fn + Fg

Fn = 0.5Fg

mv² / R = 0.5Fg + Fg

mv² /R = 1.5Fg

mv² = 1.5Fg * R

F = mg

mv² = 1.5* mg * R

v² = 1.5gR

v = sqrt(1.5gR)

V = sqrt(1.5 * 9.8 * 3.2 * 10^3)

V = sqrt(47.04^3)

V = 6858.5712 m/s

6 0
2 years ago
Other questions:
  • What is the gravitational potential energy of a 150 kg object suspended 5m above the Earth's surface
    13·1 answer
  • Samuel is running in a parks nature trail.at first checkpoint he ran 925 m in 10 minutes.at second checkpoint he slowed down and
    10·1 answer
  • A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1400
    8·1 answer
  • 1. When playing the piano, each key has a specific number of times it vibrates. The number of string vibrations correspond to ch
    11·2 answers
  • Zoe went on a fishing trip. On the first day she caught 9 catfish and 6 trout. On second caught 17 catfish and 13 trought. On wh
    5·1 answer
  • Consider the following system, where F = 80 N, m = 1 kg, and M = 11 kg M m F What is the magnitude of the force with which one b
    5·1 answer
  • 0.2 points
    8·1 answer
  • A wooden block is let go from a height of 5.80 m. What is the velocity of the block just before it hits the ground?
    10·1 answer
  • When a car moves up a hill with constant
    14·2 answers
  • What does the law of conservation of matter state? Question 4 options: Matter can be created, but it can never be destroyed. Mat
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!