Answer:
h=18.05 cm
Explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation



By putting the values


v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that

By putting the values

h=0.1805 m
h=18.05 cm
The International System Units or the SI units is scientific method of expressing the magnitudes or quantities of important natural phenomena. There are seven base units in the system, from which other units are derived. This system was formerly called the meter-kilogram-second (MKS) system.
Answer:If kinetic energy increases, so does the thermal energy, and vice versa.
Please brainliest!
Answer:
v₂ = 97.4 m / s
Explanation:
Let's write the Bernoulli equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Index 1 is for tank and index 2 for exit
We can calculate the pressure in the tank with the equation
P = F / A
Where the area of a circle is
A = π r²
E radius is half the diameter
r = d / 2
A = π d² / 4
We replace
P = F 4 / π d²2
P₁ = 397 4 /π 0.058²
P₁ = 1.50 10⁵ Pa
The water velocity in the tank is zero because it is at rest (v1 = 0)
The outlet pressure, being open to the atmosphere is P1 = 1.13 105 Pa
Since the pipe is horizontal y₁ = y₂
We replace on the first occasion
P₁ = P₂ + ½ ρ v₂²
v₂ = √ (P1-P2) 2 / ρ
v₂ = √ [(1.50-1.013) 10⁵ 2/1000]
v₂ = 97.4 m / s
Answer:
a)
, b)
, c) 
Explanation:
a) The net torque is:

Let assume a constant angular acceleration, which is:



The moment of inertia of the wheel is:



b) The deceleration of the wheel is due to the friction force. The deceleration is:



The magnitude of the torque due to friction:


c) The total angular displacement is:



The total number of revolutions of the wheel is:


