Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum

Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation



Hence, The recoil velocity is 0.354 m/s.
Answer:
A 70 kg box is slid along the floor by a 400 n force. The coefficient of friction between the box and the floor is 0. 50 when the box is sliding
Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J