Answer:

Explanation:
Given that,
Initially, the spaceship was at rest, u = 0
Final velocity of the spaceship, v = 11 m/s
Distance accelerated by the spaceship, d = 213 m
We need to find the acceleration experienced by the occupants of the spaceship during the launch. It is a concept based on the equation of kinematics. Using the third equation of motion to find acceleration.

So, the acceleration experienced by the occupants of the spaceship is
.
Answer: 3.2
Explanation:
pH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)

Thus as pH and
are inversely related, a solution having lower pH will have more amount of
concentration. And a solution having more pH will have less amount of
concentration.
Thus the solution with lowest pH of 3.2 will have highest hydronium ion concentration.
One of the major effects of heat transfer is temperature change: heating increases the temperature while cooling decreases it. We assume that there is no phase change and that no work is done on or by the system. Experiments show that the transferred heat depends on three factors—the change in temperature, the mass of the system, and the substance and phase of the substance.
Figure a shows a copper-colored cylinder of mass m and temperature change delta T. The heat Q, shown as a wavy rightward horizontal arrow, is transferred to the cylinder from the left. To the right of this image is a similar image, except that the heat transferred Q prime is twice the heat Q. The temperature change of this second cylinder, which is also labeled m, is two delta T. This cylinder is surrounded by small black wavy lines radiating outward. Figure b shows the same two cylinders as in Figure a. The left cylinder is labeled m and delta T and has a wavy heat arrow pointing at it from the left that is labeled Q. The right cylinder is labeled two m and delta T and has a wavy heat arrow pointing to it from the left labeled Q prime equals two Q. Figure c shows the same copper cylinder of mass m and with temperature change delta T, with heat Q being transferred to it. To the right of this cylinder, Q prime equals ten point eight times Q is being transferred to another cylinder filled with water whose mass and change in temperature are the same as that of the copper cylinder.
V = volts
<span>I = amps </span>
<span>P = rate or energy transfer (power) </span>
<span>and </span>
<span>P = V * I</span>
Answer:
Part A:

Part B:

Explanation:
<u> Part A:</u>
- Potential energy of charge at the given point,

- Charge,
The potential energy at a point due to a charge is defined as
.
<em>where</em>,
V = electric potential at that point.
Therefore,

<u>Part B:</u>
Now, if the charge at that point is replaced with
, then the electric potential energy at that point is given by
