The answer would be $24.55 per oz of gold alloy so rounded up would be $25
Answer:
(-1,5), (0,4) ,(1,3) ,(3,1) is linear so dont pick it
(-4,-7), (-2,-6), (2,-4), (4,-3) is linear
you know what I'll just say it wait a minute is there like a other option
Step-by-step explanation:
U can tell by graphing them out yourself and if u see a straight line then it linear, and if you see a curved loop then it's non- linear. but I'll do it :)
Answer:
2.75 or 2 3/4
Step-by-step explanation:
just divide 11/4 that's how many miles Nate walked every hour
So it tells us that g(3) = -5 and g'(x) = x^2 + 7.
So g(3) = -5 is the point (3, -5)
Using linear approximation
g(2.99) is the point (2.99, g(3) + g'(3)*(2.99-3))
now we just need to simplify that
(2.99, -5 + (16)*(-.01)) which is (2.99, -5 + -.16) which is (2.99, -5.16)
So g(2.99) = -5.16
Doing the same thing for the other g(3.01)
(3.01, g(3) + g'(3)*(3.01-3))
(3.01, -5 + 16*.01) which is (3.01, -4.84)
So g(3.01) = -4.84
So we have our linear approximation for the two.
If you wanted to, you could check your answer by finding g(x). Since you know g'(x), take the antiderivative and we will get
g(x) = 1/3x^3 + 7x + C
Since we know g(3) = -5, we can use that to solve for C
1/3(3)^3 + 7(3) + C = -5 and we find that C = -35
so that means g(x) = (x^3)/3 + 7x - 35
So just to check our linear approximations use that to find g(2.99) and g(3.01)
g(2.99) = -5.1597
g(3.01) = -4.8397
So as you can see, using the linear approximation we got our answers as
g(2.99) = -5.16
g(3.01) = -4.84
which are both really close to the actual answer. Not a bad method if you ever need to use it.
I think it’s either C or D