Sound energy cannot travel through a vacuum.
Explanation:
Waves are periodic disturbance of the space, which travel carrying energy but not matter.
There are two types of waves:
- Mechanical waves: mechanical waves propagate through the vibrations of the particles in a medium. Examples of mechanical waves are sound waves.
- Electromagnetic waves: these waves consist of periodic oscillations of electric and magnetic fields, perpendicular to each other. These waves do not need a medium to propagate, so they can also travel in a vacuum.
In this problem, we are analyzing sound energy, which is the energy carried by sound waves. Sound waves are mechanical waves, so they need a medium to propagate: therefore, they cannot travel through a vacuum, since there is no medium.
So, sound energy cannot travel through a vacuum.
Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
The apple
Explanation:
The apple has gravitational potential energy because it is just sitting there but nothing is pushing it up, it is not sitting on something. This means that it has a lot of gravitational potential energy as nothing is pushing it up.
Answer:
The wavelength of this wave is 1.01 meters.
Explanation:
The variation in the pressure of helium gas, measured from its equilibrium value, is given by :
..............(1)
The general equation is given by :
...........(2)
On comparing equation (1) and (2) :

Since, 


So, the wavelength of this wave is 1.01 meters. Hence, this is the required solution.
He used truffula trees to make thneeds